Nezih T Yardimci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast carrier dynamics in terahertz photoconductors and photomixers: beyond short-carrier-lifetime semiconductors. Nanophotonics, 2022, 11, 2661-2691.	2.9	16
2	Single-Pixel Machine Vision Using Spectral Encoding Through Diffractive Optical Networks. , 2021, , .		0
3	Terahertz pulse shaping using diffractive surfaces. Nature Communications, 2021, 12, 37.	5.8	107
4	Super-Efficient Terahertz Detection Through High Switching-Contrast Plasmonic Nanocavities. , 2021, ,		0
5	Misalignment Tolerant Diffractive Optical Networks. , 2021, , .		2
6	Spectrally encoded single-pixel machine vision using diffractive networks. Science Advances, 2021, 7, .	4.7	96
7	Terahertz Nano-Imaging of Electronic Strip Heterogeneity in a Dirac Semimetal. ACS Photonics, 2021, 8, 1873-1880.	3.2	16
8	Wavelength conversion through plasmon-coupled surface states. Nature Communications, 2021, 12, 4641.	5.8	19
9	Efficient photoconductive terahertz detection through photon trapping in plasmonic nanocavities. APL Photonics, 2021, 6, 080802.	3.0	14
10	Terahertz Pulse Shaping Using Diffractive Optical Networks. , 2021, , .		3
11	High-Switching Contrast Plasmonic Nanocavities for Terahertz Detection with Extremely High Efficiency. , 2021, , .		Ο
12	Broadband Terahertz Detection with 100 dB Dynamic Range through a High Switching-Contrast Plasmonic Nanocavity. , 2021, , .		1
13	High-Sensitivity Plasmonic Photoconductive Terahertz Detector Driven by a Femtosecond Ytterbium-Doped Fiber Laser. , 2020, , .		0
14	Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. Plant Direct, 2020, 4, e00197.	0.8	33
15	Plasmonics-enhanced photoconductive terahertz detector pumped by Ytterbium-doped fiber laser. Optics Express, 2020, 28, 3835.	1.7	33
16	Misalignment resilient diffractive optical networks. Nanophotonics, 2020, 9, 4207-4219.	2.9	75
17	Broadband Diffractive Neural Networks. , 2020, , .		1
18	Pulsed Terahertz Detection with a 95 dB Signal-to-Noise Ratio Using a Femtosecond Ytterbium-Doped Fiber Laser. , 2020, , .		0

NEZIH T YARDIMCI

#	Article	IF	CITATIONS
19	High Dynamic Range and Broadband Photoconductive Terahertz Detector Driven by a Ytterbium-Doped Femtosecond Fiber Laser. , 2020, , .		0
20	Broadband Photoconductive Terahertz Detection with a 100 dB Dynamic Range without Using a Short-Carrier-Lifetime Substrate. , 2019, , .		0
21	High-Power Terahertz Generation from Bias-Free, Telecommunication-Compatible Photoconductive Nanoantennas. , 2019, , .		1
22	Design of task-specific optical systems using broadband diffractive neural networks. Light: Science and Applications, 2019, 8, 112.	7.7	150
23	0.4 mW Terahertz Power Generation through Bias-Free, Telecommunication-Compatible, Photoconductive Nano-Antennas. , 2019, , .		5
24	25 mW Pulsed Terahertz Radiation from Bias-Free, Telecommunication-Compatible Plasmonic Nanoantennas. , 2019, , .		1
25	High-Responsivity and Broadband Photoconductive Terahertz Detection via Photon Trapping. , 2019, , .		1
26	Deep Learning-designed Diffractive Neural Networks. , 2019, , .		1
27	High-Power Terahertz Generation from Telecommunication-Compatible, Bias-Free Photoconductive Nano-Antennas. , 2018, , .		0
28	Non-invasive low charge electron beam time-of-arrival diagnostic using a plasmonics-enhanced photoconductive antenna. Applied Physics Letters, 2018, 113, .	1.5	2
29	A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity. Applied Physics Letters, 2018, 113, .	1.5	42
30	Nanostructure‣nhanced Photoconductive Terahertz Emission and Detection. Small, 2018, 14, e1802437.	5.2	96
31	Terahertz Spectroscopy with Asynchronous Optical Sampling Using a Compact Bidirectional Mode-locked Fiber Laser. , 2018, , .		0
32	All-optical machine learning using diffractive deep neural networks. Science, 2018, 361, 1004-1008.	6.0	1,105
33	High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays. Scientific Reports, 2017, 7, 42667.	1.6	93
34	Plasmonics-enhanced large-area terahertz detectors (Conference Presentation). , 2017, , .		0
35	Significant efficiency enhancement in photoconductive terahertz emitters through three-dimensional light confinement. , 2017, , .		0
36	Impact of the Metal Adhesion Layer on the Radiation Power of Plasmonic Photoconductive Terahertz Sources. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 1448-1456.	1.2	24

NEZIH T YARDIMCI

#	Article	IF	CITATIONS
37	Three-dimensional plasmonic light concentrators for efficient terahertz generation. , 2017, , .		Ο
38	Boosting radiation efficiency of photoconductive nano-antennas through 3D light confinement. , 2017, , .		0
39	A polarization-insensitive plasmonic photoconductive terahertz emitter. AIP Advances, 2017, 7, 115113.	0.6	20
40	High-Power photoconductive terahertz source enabled by three-dimensional light confinement. , 2017, , .		0
41	A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity. Scientific Reports, 2017, 7, 4166.	1.6	70
42	High-sensitivity, broadband terahertz detectors based on plasmonic nano-antenna arrays. , 2017, , .		1
43	Plasmonic nano-antenna arrays for high-sensitivity and broadband terahertz detection. , 2017, , .		1
44	Highly Efficient Photoconductive Terahertz Generation through Photon Trapping. , 2017, , .		0
45	Broadband Terahertz Detection trough Plasmonic Photoconductive Nano-Antenna Arrays. , 2017, , .		0
46	High-performance terahertz detectors based on plasmonic nano-antennas. , 2016, , .		1
47	High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Applied Physics Letters, 2016, 109, 191103.	1.5	61
48	Plasmonic large-area photoconductive emitters operating at 1550 nm. , 2016, , .		0
49	High-power, broadband terahertz radiation from large area plasmonic photoconductive emitters operating at telecommunication optical wavelengths. , 2016, , .		1
50	Telecommunication compatible terahertz emitters based on plasmonic nano-antenna arrays. , 2016, , .		0
51	1550 nm Large-Area Plasmonic Photoconductive Terahertz Sources. , 2016, , .		1
52	Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters. Optics Express, 2015, 23, 32035.	1.7	40
53	3.8 mW terahertz radiation generation through plasmonic nano-antenna arrays. , 2015, , .		4
54	3.8 mW terahertz radiation generation over a 5 THz radiation bandwidth through large area plasmonic photoconductive antennas. , 2015, , .		0

NEZIH T YARDIMCI

#	Article	IF	CITATIONS
55	High-Power Terahertz Generation Using Large-Area Plasmonic Photoconductive Emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 223-229.	2.0	182
56	Terahertz Radiation Enhancement in Large-Area Photoconductive Sources by Using Plasmonic Nanoantennas. , 2015, , .		0
57	Plasmonics enhanced terahertz radiation from large area photoconductive emitters. , 2014, , .		3
58	Large Area Plasmonic Photoconductive Emitters for Generating High Power Broadband Terahertz Radiation. , 2014, , .		0