
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HVDC grids stability improvement by direct current power system stabilizer. IET Generation, Transmission and Distribution, 2022, 16, 492-502.	1.4	3
2	Control of LPV Modeled AC-Microgrid Based on Mixed H ₂ /H _{â^ž} Time-Varying Linear State Feedback and Robust Predictive Algorithm. IEEE Access, 2022, 10, 3738-3755.	2.6	7
3	Hybrid Method for Optimal Placement of DC-PFCs to Enhance Static Security of VSC-HVdc Grids. IEEE Systems Journal, 2022, 16, 4839-4848.	2.9	4
4	A modified droop control structure for simultaneous powerâ€sharing and DC voltage oscillations damping in MTâ€HVDC grids. IET Generation, Transmission and Distribution, 2022, 16, 1890-1900.	1.4	2
5	Integrated control and monitoring of a smart charging station with a proposed data exchange protocol. IET Renewable Power Generation, 2022, 16, 532-546.	1.7	1
6	A Comprehensive VSG-Based Onshore FRT Control Strategy for OWFs With VSC-MT-HVDC Transmission. IEEE Access, 2021, 9, 155788-155804.	2.6	7
7	Technical Constrained Power Flow Studies for IDC-PFC Integrated Into the MT-HVDC Grids. IEEE Transactions on Power Delivery, 2021, 36, 3033-3042.	2.9	8
8	FEM analysis of electric field distribution for polymeric insulator under different configuration of non-uniform pollution. Electrical Engineering, 2021, 103, 2799-2808.	1.2	13
9	HVDC Breaker Power Loss Reduction by Bridge-Type Hybrid Breakers. Energies, 2021, 14, 1526.	1.6	5
10	Analysis of Frequency-Dependent Network Equivalents in Dynamic Harmonic Domain. Electric Power Systems Research, 2021, 193, 107037.	2.1	0
11	Wind Energy Generators Fault Current Protection: Structures Survey. , 2021, , .		4
12	HVdc Circuit Breakers: Prospects and Challenges. Applied Sciences (Switzerland), 2021, 11, 5047.	1.3	15
13	HVDC Circuit Breakers: A Comprehensive Review. IEEE Transactions on Power Electronics, 2021, 36, 13726-13739.	5.4	71
14	Control strategy for direct voltage and frequency stability enhancement in HVAC/HVDC grids. IET Renewable Power Generation, 2021, 15, 3915-3926.	1.7	4
15	Grid-Following Voltage Source Converters: Basic Schemes and Current Control Techniques to Operate With Unbalanced Voltage Conditions. IEEE Open Journal of the Industrial Electronics Society, 2021, 2, 528-544.	4.8	8
16	Fault Current Protection in distribution system connected EVCH: A Review. , 2021, , .		4
17	Innovative primary frequency control in lowâ€inertia power systems based on wideâ€area RoCoF sharing. IET Energy Systems Integration, 2020, 2, 151-160.	1.1	36
18	Optimal placement of direct current power system stabiliser (DCâ€PSS) in multiâ€ŧerminal HVDC grids. IET Generation, Transmission and Distribution, 2020, 14, 2315-2322.	1.4	12

#	Article	IF	CITATIONS
19	Bridgeâ€ŧype fault current limiter and hybrid breaker for HVDC grids applications. IET Generation, Transmission and Distribution, 2020, 14, 3913-3919.	1.4	25
20	Grid Code-Dependent Frequency Control Optimization in Multi-Terminal DC Networks. Energies, 2020, 13, 6485.	1.6	4
21	New Representation of Power Injection Model of IDC-PFC within NR-based MT-HVDC Grids Power Flow Studies. , 2020, , .		4
22	Driver Behavior Soft-Sensor Based on Neurofuzzy Systems and Weighted Projection on Principal Components. IEEE Sensors Journal, 2020, 20, 11454-11462.	2.4	11
23	Monte arloâ€based simulation and investigation of 230ÂkV transmission lines outage due to lightning. High Voltage, 2020, 5, 83-91.	2.7	2
24	Optimal Linear Control of Modular Multi-Level Converters with a Prescribed Degree of Stability. Electric Power Components and Systems, 2020, 48, 30-41.	1.0	3
25	Inductive fault current limiters: A review. Electric Power Systems Research, 2020, 187, 106499.	2.1	35
26	A Multi-Terminal HVdc Grid Topology Proposal for Offshore Wind Farms. Applied Sciences (Switzerland), 2020, 10, 1833.	1.3	6
27	Voltage Transformer Ferroresonance: An Inhibitor Device. IEEE Transactions on Power Delivery, 2020, , 1-1.	2.9	12
28	Dual-Active Bridge Series Resonant Electric Vehicle Charger: A Self-Tuning Method. Electronics (Switzerland), 2020, 9, 253.	1.8	8
29	Power injection model of IDC-PFC for NR-based and technical constrained MT-HVDC grids power flow studies. Electric Power Systems Research, 2020, 182, 106236.	2.1	13
30	A Multifunction High-Temperature Superconductive Power Flow Controller and Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-8.	1.1	33
31	Distribution system protection by coordinated fault current limiters. IET Energy Systems Integration, 2020, 2, 59-65.	1.1	20
32	Controllable reactor based hybrid HVDC breaker. High Voltage, 2020, 5, 543-548.	2.7	17
33	Compound ferroresonance overvoltage and fault current limiter for power system protection. IET Energy Systems Integration, 2020, 2, 325-330.	1.1	13
34	DC-Link Voltage Stability-Based Control Strategy for Grid-Connected Hybrid AC/DC Microgrid. , 2020, , .		11
35	Optimal Power Flow and Unified Control Strategy for Multi-Terminal HVDC Systems. IEEE Access, 2019, 7, 92642-92650.	2.6	16
36	An Imperialist Competitive Algorithm-Based Multi-Objective Optimization for Voltage Source Converter High-Voltage Direct Current Stations Control in Multi-Terminal HVDC Grids. Electric Power Components and Systems, 2019, 47, 316-328.	1.0	3

#	Article	IF	CITATIONS
37	A New Droop Coefficient Design Method for Accurate Power-Sharing in VSC-MTDC Systems. IEEE Access, 2019, 7, 47605-47614.	2.6	27
38	A Multi-Inductor H Bridge Fault Current Limiter. Electronics (Switzerland), 2019, 8, 795.	1.8	14
39	A DC-Reactor-Based Solid-State Fault Current Limiter for HVdc Applications. IEEE Transactions on Power Delivery, 2019, 34, 720-728.	2.9	85
40	A Compound Current Limiter and Circuit Breaker. Electronics (Switzerland), 2019, 8, 551.	1.8	22
41	An Asymmetrical Step-Up Multilevel Inverter Based on Switched-Capacitor Network. Sustainability, 2019, 11, 3453.	1.6	10
42	Integration of Large Scale PV-Based Generation into Power Systems: A Survey. Energies, 2019, 12, 1425.	1.6	82
43	A Data-Driven Based Voltage Control Strategy for DC-DC Converters: Application to DC Microgrid. Electronics (Switzerland), 2019, 8, 493.	1.8	18
44	Static Modeling of the IDC-PFC to Solve DC Power Flow Equations of MT-HVDC Grids Employing the Newton-Raphson Method. , 2019, , .		8
45	On the Optimization of Damping Enhancement in a Power System with a Hybrid HVDC Link. , 2019, , .		6
46	Control of MMC-Based STATCOM as an Effective Interface between Energy Sources and the Power Grid. Electronics (Switzerland), 2019, 8, 1264.	1.8	8
47	Modelling and control of a Concentrating Solar Power Plant prototype. , 2019, , .		Ο
48	Microgrids interconnection to upstream AC grid using a dualâ€function fault current limiter and power flow controller: principle and test results. IET Energy Systems Integration, 2019, 1, 269-275.	1.1	15
49	Analytical modeling and inertia estimation of VSG-controlled Type 4 WTGs: Power system frequency response investigation. International Journal of Electrical Power and Energy Systems, 2019, 107, 446-461.	3.3	26
50	A hybrid active load and ideal synchronous condenserâ€based model for STATCOM applied to power flow studies. IET Energy Systems Integration, 2019, 1, 229-235.	1.1	4
51	Electromagneticâ€based maximum output power control in new twoâ€layer BLDC generator using optimal control of turnâ€on and turnâ€off angles in variable speed applications. IET Electric Power Applications, 2019, 13, 1792-1802.	1.1	0
52	Single-Phase Modeling Approach in Dynamic Harmonic Domain. IEEE Transactions on Power Systems, 2018, 33, 257-267.	4.6	16
53	A Generalized Representation of VSC-HVDC Based AC/DC Microgrids for Power Flow Studies. , 2018, , .		1
54	Incorporation of Synchronous Power Controlled Energy Storage System in Wind Farms to Provide		1

Inertial and Primary Frequency Support., 2018, ... rgy

#	Article	IF	CITATIONS
55	Fuzzy Gain Scheduling based Grid Synchronization System Responsive to the Electrical Network Conditions. , 2018, , .		2
56	Inertial Support by a Synchronous Power Controlled Type 4 Wind Turbine: A Restructured Control Approach. , 2018, , .		5
57	Power Flow Control in Multi-Terminal HVDC Grids Using a Serial-Parallel DC Power Flow Controller. IEEE Access, 2018, 6, 56934-56944.	2.6	62
58	Numerical and Experimental Investigation of an Improved Flux Path Brushless-DC Machine for Variable Speed Applications. IEEE Transactions on Transportation Electrification, 2018, 4, 877-887.	5.3	7
59	Optimal placement and control variable setting of power flow controllers in multi-terminal HVDC grids for enhancing static security. International Journal of Electrical Power and Energy Systems, 2018, 102, 272-286.	3.3	33
60	Multiterminal DC grids: Operating analogies to AC power systems. Renewable and Sustainable Energy Reviews, 2017, 70, 886-895.	8.2	45
61	Heuristic Optimization of Supplementary Controller for VSC-HVDC/AC Interconnected Grids Considering PLL. Electric Power Components and Systems, 2017, 45, 288-301.	1.0	13
62	Multi-terminal DC grids: challenges and prospects. Journal of Modern Power Systems and Clean Energy, 2017, 5, 515-523.	3.3	87
63	Unified reference controller for flexible primary control and inertia sharing in multiâ€ŧerminal voltage source converterâ€HVDC grids. IET Generation, Transmission and Distribution, 2017, 11, 750-758.	1.4	46
64	On sizing the required energy of HVDC based inertia emulation for frequency control. , 2017, , .		5
65	Power Dispatch and Voltage Control in Multiterminal HVDC Systems: A Flexible Approach. IEEE Access, 2017, 5, 24608-24616.	2.6	33
66	Analysis on impacts of the shunt conductances in multi-terminal HVDC grids optimal power-flow. , 2017, , .		9
67	Dynamic Resonance Analysis and Oscillation Damping of Multiterminal DC Grids. IEEE Access, 2017, 5, 16974-16984.	2.6	23
68	Flexible HVDC transmission systems small signal modelling: A case study on CIGRE Test MT-HVDC grid. , 2017, , .		14
69	DC Distribution Networks. , 2017, , 509-561.		3
70	Control of VSC-HVDC with electromechanical characteristics and unified primary strategy. , 2016, , .		1
71	Autonomous inertia-sharing control of multi-terminal VSC-HVDC grids. , 2016, , .		4
72	Multiâ€ŧerminal HVDC grids with inertia mimicry capability. IET Renewable Power Generation, 2016, 10, 752-760.	1.7	42

KUMARS ROUZBEHI

#	Article	IF	CITATIONS
73	Flexible Control of Power Flow in Multiterminal DC Grids Using DC–DC Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4, 1135-1144.	3.7	67
74	Generalized voltage droop control with inertia mimicry capability - step towards automation of multi-terminal HVDC grids. , 2015, , .		11
75	Comparative efficiency study of single phase photovoltaic grid connected inverters using PLECS®. , 2015, , .		5
76	Generalized voltage droop strategy for power synchronization control in multi-terminal DC grids - an analytical approach. , 2015, , .		6
77	A Generalized Voltage Droop Strategy for Control of Multiterminal DC Grids. IEEE Transactions on Industry Applications, 2015, 51, 607-618.	3.3	220
78	Optimized Control of Multi-Terminal DC Grids Using Particle Swarm Optimization. EPE Journal (European Power Electronics and Drives Journal), 2014, 24, 38-49.	0.7	13
79	A control strategy for DC-link voltage control containing PV generation and energy storage — An intelligent approach. , 2014, , .		2
80	Proposals for flexible operation of multi-terminal DC grids: Introducing flexible DC transmission system (FDCTS). , 2014, , .		25
81	Integration of renewable generation for frequency support of HVDC/AC interconnected systems under power market scenario. , 2014, , .		1
82	Towards fully controllable multi-terminal DC grids using flexible DC transmission systems. , 2014, , .		14
83	A hybrid power flow controller for flexible operation of multi-terminal DC grids. , 2014, , .		16
84	DC Voltage Control and Power Sharing in Multiterminal DC Grids Based on Optimal DC Power Flow and Voltage-Droop Strategy. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 1171-1180.	3.7	155
85	Intelligent voltage control in a DC micro-grid containing PV generation and energy storage. , 2014, , .		11
86	Optimized control of multi-terminal DC GridsUsing particle swarm optimization. , 2013, , .		6
87	Identification and local linear control of a DC-DC buck converter using local model networks. , 2013, , .		2
88	A hierarchical control structure for multi-terminal VSC-based HVDC grids with GVD characteristics. , 2013, , .		8
89	Nonlinear Power System Load Identification Using Local Model Networks. IEEE Transactions on Power Systems, 2013, 28, 2872-2881.	4.6	35
90	A generalized voltage droop strategy for control of multi-terminal DC grids. , 2013, , .		31

#	Article	IF	CITATIONS
91	Comprehensive analogy between conventional AC grids and DC grids characteristics. , 2013, , .		11
92	A novel approach for voltage control of multi-terminal DC grids with offshore wind farms. , 2013, , .		17
93	Identification and maximum power point tracking of photovoltaic generation by a local neuro-fuzzy model. , 2012, , .		7
94	Effect of VSC-HVDC on load frequency control in multi-area power system. , 2012, , .		22
95	Enhanced average current-mode control for DC-DC converters based on an optimized fuzzy logic controller. , 2012, , .		0
96	Application of Imperialist Competitive Algorithm to design an optimal controller for LFC problem. , 2012, , .		4
97	A New Combined Model for Simulation of Mutual Effects between LFC and AVR Loops. , 2009, , .		49
98	Application of data mining on fault detection and prediction in Boiler of power plant using artificial neural network. , 2009, , .		15