Matthias Habjan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130637/publications.pdf

Version: 2024-02-01

24 papers 3,094 citations

361296 20 h-index 610775 24 g-index

24 all docs

24 docs citations

times ranked

24

4940 citing authors

#	Article	IF	CITATIONS
1	Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nature Communications, 2021, 12, 7009.	5.8	22
2	elF2B as a Target for Viral Evasion of PKR-Mediated Translation Inhibition. MBio, 2020, 11 , .	1.8	18
3	NSs Protein of Sandfly Fever Sicilian Phlebovirus Counteracts Interferon (IFN) Induction by Masking the DNA-Binding Domain of IFN Regulatory Factor 3. Journal of Virology, 2018, 92, .	1.5	17
4	Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2106-E2115.	3.3	86
5	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	2.1	184
6	High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection. Journal of Biomolecular Screening, 2016, 21, 354-362.	2.6	14
7	Cytoplasmic sensing of viral nucleic acids. Current Opinion in Virology, 2015, 11, 31-37.	2.6	36
8	mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nature Communications, 2015, 6, 8192.	5.8	89
9	Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH. Journal of Virology, 2014, 88, 3464-3473.	1.5	65
10	Incoming RNA Virus Nucleocapsids Containing a $5\hat{a}\in^2$ -Triphosphorylated Genome Activate RIG-I and Antiviral Signaling. Cell Host and Microbe, 2013, 13, 336-346.	5.1	157
11	Sequestration by IFIT1 Impairs Translation of 2′O-unmethylated Capped RNA. PLoS Pathogens, 2013, 9, e1003663.	2.1	175
12	TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. Journal of Virology, 2013, 87, 6150-6160.	1.5	296
13	Viral immune modulators perturb the human molecular network by common and unique strategies. Nature, 2012, 487, 486-490.	13.7	249
14	Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 2011, 12, 137-143.	7.0	640
15	Toscana virus induces interferon although its NSs protein reveals antagonistic activity. Journal of General Virology, 2011, 92, 71-79.	1.3	33
16	Species-independent bioassay for sensitive quantification of antiviral type I interferons. Virology Journal, 2010, 7, 50.	1.4	30
17	Virus-Like Particles Expressing the Nucleocapsid Gene as an Efficient Vaccine Against Rift Valley Fever Virus. Vector-Borne and Zoonotic Diseases, 2010, 10, 701-703.	0.6	27
18	Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. Journal of General Virology, 2009, 90, 2686-2694.	1.3	41

#	Article	IF	CITATIONS
19	Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology, 2009, 385, 400-408.	1.1	69
20	Vaccination with virus-like particles protects mice from lethal infection of Rift Valley Fever Virus. Virology, 2009, 385, 409-415.	1.1	86
21	NSs Protein of Rift Valley Fever Virus Induces the Specific Degradation of the Double-Stranded RNA-Dependent Protein Kinase. Journal of Virology, 2009, 83, 4365-4375.	1.5	216
22	Processing of Genome 5′ Termini as a Strategy of Negative-Strand RNA Viruses to Avoid RIG-I-Dependent Interferon Induction. PLoS ONE, 2008, 3, e2032.	1.1	260
23	T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. Journal of General Virology, 2008, 89, 2157-2166.	1.3	134
24	La Crosse Bunyavirus Nonstructural Protein NSs Serves To Suppress the Type I Interferon System of Mammalian Hosts. Journal of Virology, 2007, 81, 4991-4999.	1.5	150