List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous carbon microspheres with highly graphitized structure for potassium-ion storage. Journal of Colloid and Interface Science, 2020, 577, 48-53.	5.0	22
2	Facile synthesis of macroporus SnS microspheres as a potential anode material for enhanced sodium ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 80, 130-135.	2.9	8
3	Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 6449-6456.	4.0	130
4	Superior electrochemical properties of rutile VO2-carbon composite microspheres as a promising anode material for lithium ion batteries. Electrochimica Acta, 2015, 156, 179-187.	2.6	38
5	3D MoS ₂ –Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties. Advanced Functional Materials, 2015, 25, 1780-1788.	7.8	482
6	Co9S8–carbon composite as anode materials with improved Na-storage performance. Carbon, 2015, 94, 85-90.	5.4	112
7	Capacitive properties of reduced graphene oxide microspheres with uniformly dispersed nickel sulfide nanocrystals prepared by spray pyrolysis. Electrochimica Acta, 2015, 167, 287-293.	2.6	8
8	Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries. Scientific Reports, 2015, 4, 5785.	1.6	30
9	Macroporous Fe ₃ O ₄ /Carbon Composite Microspheres with a Short Li ⁺ Diffusion Pathway for the Fast Charge/Discharge of Lithium Ion Batteries. Chemistry - A European Journal, 2014, 20, 11078-11083.	1.7	36
10	Energy Storage: Design and Fabrication of New Nanostructured SnO2-Carbon Composite Microspheres for Fast and Stable Lithium Storage Performance (Small 16/2014). Small, 2014, 10, 3198-3198.	5.2	1
11	Excellent Electrochemical Properties of Yolk–Shell MoO ₃ Microspheres Formed by Combustion of Molybdenum Oxide–Carbon Composite Microspheres. Chemistry - an Asian Journal, 2014, 9, 1011-1015.	1.7	27
12	Preparation of Yolkâ€ S hell and Filled Co ₉ S ₈ Microspheres and Comparison of their Electrochemical Properties. Chemistry - an Asian Journal, 2014, 9, 572-576.	1.7	69
13	Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming TiO2 composite double layers with down/up converting phosphor dispersion. RSC Advances, 2014, 4, 10039.	1.7	28
14	Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Advanced Powder Technology, 2014, 25, 18-31.	2.0	80
15	Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis. Sensors and Actuators B: Chemical, 2014, 195, 189-196.	4.0	107
16	Design and Fabrication of New Nanostructured SnO ₂ â€Carbon Composite Microspheres for Fast and Stable Lithium Storage Performance. Small, 2014, 10, 3240-3245.	5.2	66
17	Preparation of Li ₄ Ti ₅ O ₁₂ Yolk–Shell Powders by Spray Pyrolysis and their Electrochemical Properties. Chemistry - an Asian Journal, 2014, 9, 443-446.	1.7	23
18	Comparison of the electrochemical properties of yolk–shell and dense structured CoFe ₂ O ₄ powders prepared by a spray pyrolysis process. RSC Advances, 2014, 4, 40188.	1.7	13

#	Article	IF	CITATIONS
19	Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chemical Communications, 2014, 50, 12322-12324.	2.2	130
20	Superior cycling and rate performances of rattle-type CoMoO4 microspheres prepared by one-pot spray pyrolysis. RSC Advances, 2014, 4, 17873.	1.7	28
21	Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries. Scientific Reports, 2014, 4, 5786.	1.6	35
22	One-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries. Scientific Reports, 2014, 4, 5751.	1.6	37
23	Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery. Scientific Reports, 2014, 4, 5857.	1.6	88
24	A new strategy for synthesizing yolk–shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale, 2013, 5, 8899.	2.8	60
25	Preparation and electrochemical properties of glass-modified LiCoO2 cathode powders. Journal of Power Sources, 2013, 244, 129-135.	4.0	22
26	One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide–Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries. Nano Letters, 2013, 13, 5462-5466.	4.5	151
27	Characteristics of Li2TiO3–LiCrO2 composite cathode powders prepared by ultrasonic spray pyrolysis. Journal of Power Sources, 2013, 244, 336-343.	4.0	14
28	Continuous one-pot synthesis of sandwich structured core–shell particles and transformation to yolk–shell particles. Chemical Communications, 2013, 49, 3884.	2.2	9
29	Core–shell-structure Ag–BaTiO3 composite nanopowders prepared directly by flame spray pyrolysis. Materials Chemistry and Physics, 2013, 140, 266-272.	2.0	4
30	Electrochemical Properties of ZrO2-Doped V2O5 Amorphous Powders with Spherical Shape and Fine Size. ACS Applied Materials & amp; Interfaces, 2013, 5, 3234-3240.	4.0	25
31	Nano-sized Ag–BaTiO3 composite powders with various amount of Ag prepared by spray pyrolysis. Journal of the European Ceramic Society, 2013, 33, 1335-1341.	2.8	10
32	Characteristics of BaTiO3-coated Ag powders directly prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2012, 120, 15-20.	0.5	1
33	Characteristics of Ag-doped BaTiO3 nanopowders prepared by spray pyrolysis. Ceramics International, 2012, 38, 2071-2077.	2.3	2
34	Dielectric properties of nano-sized Ba0.7Sr0.3TiO3 powders prepared by spray pyrolysis. Ceramics International, 2012, 38, 4029-4033.	2.3	8
35	Electrochemical properties of nanosized LiCrO2·Li2MnO3 composite powders prepared by a new concept spray pyrolysis. Electrochimica Acta, 2012, 69, 345-350.	2.6	14
36	Electrochemical properties of nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm prepared by flame spray pyrolysis. Materials Chemistry and Physics, 2012, 134, 254-259.	2.0	23

#	Article	IF	CITATIONS
37	Electrochemical properties of Li2O–2B2O3 glass-modified LiMn2O4 powders prepared by spray pyrolysis process. Journal of Power Sources, 2012, 210, 110-115.	4.0	25
38	Electrochemical properties of spherically shaped dense V2O5 cathode powders prepared directly by spray pyrolysis. Journal of Power Sources, 2012, 211, 84-91.	4.0	20
39	Pb-free glass frits prepared by spray pyrolysis as inorganic binders of Al electrodes in Si solar cells. Journal of Alloys and Compounds, 2011, 509, 6325-6331.	2.8	25
40	Characteristics of ZnO–B2O3–SiO2–CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode. Journal of Alloys and Compounds, 2011, 509, 8077-8081.	2.8	11
41	Characteristics of BaO–B2O3–SiO2 nano glass powders prepared by flame spray pyrolysis as the sintering agent of BaTiO3 ceramics. Journal of Alloys and Compounds, 2011, 509, 7979-7984.	2.8	9
42	Characteristics of nano-sized Ag-Pd (70-30)-glass composite powders prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 23-28.	0.5	1
43	Properties of La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte formed from the nano-sized powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 752-756.	0.5	0
44	Size-controlled glass frits with spherical shape for Al electrodes in Si solar cells. Journal of the Ceramic Society of Japan, 2011, 119, 954-960.	0.5	1
45	Low-temperature sintering characteristics of nano-sized BaNd2Ti5O14 and Bi2O3–B2O3–ZnO–SiO2 glass powders prepared by gas-phase reactions. Materials Research Bulletin, 2011, 46, 2112-2116.	2.7	3
46	Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis. Journal of Power Sources, 2011, 196, 6682-6687.	4.0	73
47	Characteristics of nanosized Bi-based glass powders prepared by flame spray pyrolysis as transparent dielectric layer material. Ceramics International, 2011, 37, 687-690.	2.3	2
48	Size-controlled silver-glass composite powders with nanometer size prepared by flame spray pyrolysis. Powder Technology, 2011, 207, 362-369.	2.1	9
49	Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceramics International, 2011, 37, 1967-1971.	2.3	18
50	Characteristics of Eu2+-doped Ca-α-SiAlON phosphor powders prepared by spray pyrolysis process. Optical Materials, 2011, 33, 538-542.	1.7	8
51	Nanosized LiMn2O4 powders prepared by flame spray pyrolysis from aqueous solution. Journal of Power Sources, 2011, 196, 2858-2862.	4.0	23
52	Characteristics of Ag–Pd–glass composite and Ag–Pd alloy powders prepared by spray pyrolysis. Powder Technology, 2011, 207, 318-323.	2.1	0
53	Preparation of silver-glass composite powder and conducting film. Journal of the Ceramic Society of Japan, 2010, 118, 353-356.	0.5	2
54	Effect of preparation conditions on the properties of silver-glass composite powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2010, 118, 25-29.	0.5	2

#	Article	IF	CITATIONS
55	Properties of nano-sized glass powders prepared by flame spray pyrolysis as an inorganic binder in ink-jet printing. Journal of the Ceramic Society of Japan, 2010, 118, 613-616.	0.5	2
56	BaMgAl10017: Eu2+ phosphor powders prepared from precursor powders with a hollow and thin wall structure containing NH4F flux. Electronic Materials Letters, 2010, 6, 81-86.	1.0	6
57	Eu-doped B2O3–ZnO–PbO glass phosphor powders withÂspherical shape and fine size prepared by spray pyrolysis. Applied Physics A: Materials Science and Processing, 2010, 98, 671-677.	1.1	2
58	Characteristics of BaNd2Ti5O14 powders directly prepared by high-temperature spray pyrolysis. Ceramics International, 2010, 36, 63-68.	2.3	2
59	Effect of precursor types on the characteristics of the Pb-based glass powders prepared by spray pyrolysis. Ceramics International, 2010, 36, 395-399.	2.3	1
60	Firing characteristics of size-controlled silver–glass composite powders prepared by spray pyrolysis. Powder Technology, 2010, 198, 347-353.	2.1	5
61	Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. Journal of Materials Science: Materials in Medicine, 2010, 21, 1143-1149.	1.7	41
62	Conductive silver films formed from nano-sized silver powders prepared by flame spray pyrolysis. Materials Chemistry and Physics, 2010, 124, 959-963.	2.0	10
63	Size-controlled Bi-based glass powders prepared by spray pyrolysis as inorganic additives for silver electrode. Ceramics International, 2010, 36, 1171-1176.	2.3	4
64	Characteristics of Ag powders coated with Pb-based glass material prepared by spray pyrolysis under various gas environments. Ceramics International, 2010, 36, 2477-2483.	2.3	3
65	Nano-sized silver powders coated with Pb-based glass material with high glass transition temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 45-50.	2.3	5
66	Fine size Pb-based glass frit with spherical shape as the inorganic binder of Al electrode for Si solar cells. Journal of Alloys and Compounds, 2010, 490, 488-492.	2.8	21
67	Characteristics of Pb-based glass frit prepared by spray pyrolysis as the inorganic binder of silver electrode for Si solar cells. Journal of Alloys and Compounds, 2010, 490, 582-588.	2.8	16
68	Characteristics of silver–glass composite powders as the silver electrode for Si solar cells. Journal of Alloys and Compounds, 2010, 491, 584-588.	2.8	14
69	Effect of gas environment on the properties of silver–glass composite powders with core–shell structure prepared by spray pyrolysis. Journal of Alloys and Compounds, 2010, 492, 723-730.	2.8	2
70	Characteristics of Bi-based glass frit having similar mean size and morphology to those of silver powders at high firing temperatures. Journal of Alloys and Compounds, 2010, 497, 259-266.	2.8	28
71	Characteristics of the glass powders with low Pb content directly prepared by spray pyrolysis. Journal of Alloys and Compounds, 2010, 502, 158-162.	2.8	2
72	Characteristics of size controlled hydroxyapatite powders with nanometer size prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2009, 117, 1060-1064.	0.5	3

#	Article	IF	CITATIONS
73	Characteristics of carbon-glass composite powders with spherical shape and submicron size prepared by spray pyrolysis from colloidal spray solution. Journal of the Ceramic Society of Japan, 2009, 117, 1277-1280.	0.5	0
74	Effect of glass powders with spherical shape and fine size on the sintering behavior and dielectric properties of BaTiO3 ceramics. Journal of the Ceramic Society of Japan, 2009, 117, 675-679.	0.5	2
75	Firing characteristics of nano-sized glass powders prepared by flame spray pyrolysis for electrode application. Journal of the Ceramic Society of Japan, 2009, 117, 1311-1316.	0.5	7