
Titus Josef Brinker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4129246/publications.pdf Version: 2024-02-01

TITUS LOSEE RDINKED

#	Article	IF	CITATIONS
1	Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer, 2019, 113, 47-54.	2.8	300
2	Deep learning in cancer pathology: a new generation of clinical biomarkers. British Journal of Cancer, 2021, 124, 686-696.	6.4	291
3	Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review. Journal of Medical Internet Research, 2018, 20, e11936.	4.3	277
4	Deep neural networks are superior to dermatologists in melanoma image classification. European Journal of Cancer, 2019, 119, 11-17.	2.8	212
5	Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 2019, 120, 114-121.	2.8	197
6	A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer, 2019, 111, 148-154.	2.8	197
7	Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. European Journal of Cancer, 2019, 118, 91-96.	2.8	188
8	Pathologist-level classification of histopathological melanoma images with deep neural networks. European Journal of Cancer, 2019, 115, 79-83.	2.8	156
9	Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. European Journal of Cancer, 2019, 119, 57-65.	2.8	134
10	Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. European Journal of Cancer, 2021, 156, 202-216.	2.8	115
11	Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. European Journal of Cancer, 2019, 111, 30-37.	2.8	104
12	Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective. Frontiers in Medicine, 2020, 7, 233.	2.6	79
13	Swarm learning for decentralized artificial intelligence in cancer histopathology. Nature Medicine, 2022, 28, 1232-1239.	30.7	77
14	Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review. European Journal of Cancer, 2021, 155, 200-215.	2.8	70
15	Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Medical Image Analysis, 2022, 79, 102474.	11.6	64
16	Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. European Journal of Cancer, 2021, 149, 94-101.	2.8	57
17	Weakly supervised annotationâ€free cancer detection and prediction of genotype in routine histopathology. Journal of Pathology, 2022, 256, 50-60.	4.5	48
18	Artificial Intelligence–based Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible Preselection for Molecular Testing?. European Urology Focus, 2022, 8, 472-479.	3.1	47

#	Article	IF	CITATIONS
19	Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. Journal of Medical Internet Research, 2020, 22, e18091.	4.3	45
20	Teledermatology: Comparison of Store-and-Forward Versus Live Interactive Video Conferencing. Journal of Medical Internet Research, 2018, 20, e11871.	4.3	44
21	Explainable artificial intelligenceÂin skin cancer recognition: A systematic review. European Journal of Cancer, 2022, 167, 54-69.	2.8	42
22	Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. Journal of Pathology, 2022, 256, 269-281.	4.5	39
23	Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer. BJU International, 2021, 128, 352-360.	2.5	37
24	Photoaging Mobile Apps in School-Based Tobacco Prevention: The Mirroring Approach. Journal of Medical Internet Research, 2016, 18, e183.	4.3	37
25	Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. European Journal of Cancer, 2022, 160, 80-91.	2.8	37
26	Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study. Journal of Medical Internet Research, 2021, 23, e23436.	4.3	36
27	Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours. European Journal of Cancer, 2021, 154, 227-234.	2.8	36
28	Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists. Journal of the American Academy of Dermatology, 2022, 86, 640-642.	1.2	35
29	Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review. Journal of Medical Internet Research, 2021, 23, e20708.	4.3	35
30	Photoaging smartphone app promoting poster campaign to reduce smoking prevalence in secondary schools: the Smokerface Randomized Trial: design and baseline characteristics. BMJ Open, 2016, 6, e014288.	1.9	34
31	Clinical and genetic analysis of melanomas arising in acral sites. European Journal of Cancer, 2019, 119, 66-76.	2.8	34
32	A benchmark for neural network robustness in skin cancer classification. European Journal of Cancer, 2021, 155, 191-199.	2.8	34
33	Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data. European Journal of Cancer, 2019, 119, 30-34.	2.8	33
34	Effects of Label Noise on Deep Learning-Based Skin Cancer Classification. Frontiers in Medicine, 2020, 7, 177.	2.6	33
35	Robustness of convolutional neural networks in recognition of pigmented skin lesions. European Journal of Cancer, 2021, 145, 81-91.	2.8	32
36	Deep learning can predict lymph node status directly from histology in colorectal cancer. European Journal of Cancer, 2021, 157, 464-473.	2.8	32

#	Article	IF	CITATIONS
37	Deep learning detects genetic alterations in cancer histology generated by adversarial networks. Journal of Pathology, 2021, 254, 70-79.	4.5	31
38	Photoaging Mobile Apps as a Novel Opportunity for Melanoma Prevention: Pilot Study. JMIR MHealth and UHealth, 2017, 5, e101.	3.7	29
39	A Skin Cancer Prevention Facial-Aging Mobile App for Secondary Schools in Brazil: Appearance-Focused Interventional Study. JMIR MHealth and UHealth, 2018, 6, e60.	3.7	29
40	The Value of Total Body Photography for the Early Detection of Melanoma: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 1726.	2.6	28
41	Education Against Tobacco (EAT): a quasi-experimental prospective evaluation of a multinational medical-student-delivered smoking prevention programme for secondary schools in Germany. BMJ Open, 2015, 5, e008093.	1.9	26
42	Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions. PLoS ONE, 2019, 14, e0218713.	2.5	26
43	Assessment of Nonradioactive Multispectral Optoacoustic Tomographic Imaging With Conventional Lymphoscintigraphic Imaging for Sentinel Lymph Node Biopsy in Melanoma. JAMA Network Open, 2019, 2, e199020.	5.9	24
44	Evaluation of Long-term Clearance Rates of Interventions for Actinic Keratosis. JAMA Dermatology, 2021, 157, 1066.	4.1	24
45	Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks. PeerJ, 2019, 7, e6335.	2.0	24
46	Overdiagnosis of melanoma – causes, consequences and solutions. JDDG - Journal of the German Society of Dermatology, 2020, 18, 1236-1243.	0.8	23
47	Photoaging Mobile Apps in School-Based Melanoma Prevention: Pilot Study. Journal of Medical Internet Research, 2017, 19, e319.	4.3	23
48	Inhibition of Haspin Kinase Promotes Cell-Intrinsic and Extrinsic Antitumor Activity. Cancer Research, 2020, 80, 798-810.	0.9	22
49	Effect of a Face-Aging Mobile App–Based Intervention on Skin Cancer Protection Behavior in Secondary Schools in Brazil. JAMA Dermatology, 2020, 156, 737.	4.1	21
50	Photoaging Mobile Apps: A Novel Opportunity for Smoking Cessation?. Journal of Medical Internet Research, 2015, 17, e186.	4.3	21
51	Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: A systematic literature review. ImmunoInformatics, 2021, 3-4, 100008.	2.2	21
52	A Face-Aging App for Smoking Cessation in a Waiting Room Setting: Pilot Study in an HIV Outpatient Clinic. Journal of Medical Internet Research, 2018, 20, e10976.	4.3	19
53	Patient Attitudes and Their Awareness Towards Skin Cancer–Related Apps: Cross-Sectional Survey. JMIR MHealth and UHealth, 2019, 7, e13844.	3.7	19
54	Education Against Tobacco (EAT): a quasi-experimental prospective evaluation of a programme for preventing smoking in secondary schools delivered by medical students: a study protocol. BMJ Open, 2014, 4, e004909-e004909.	1.9	18

#	Article	IF	CITATIONS
55	Loss of p53 compensates osteopenia in murine Mysml deficiency. FASEB Journal, 2018, 32, 1957-1968.	0.5	18
56	Digital Natives' Preferences on Mobile Artificial Intelligence Apps for Skin Cancer Diagnostics: Survey Study. JMIR MHealth and UHealth, 2021, 9, e22909.	3.7	18
57	A Medical Student-Delivered Smoking Prevention Program, Education Against Tobacco, for Secondary Schools in Germany: Randomized Controlled Trial. Journal of Medical Internet Research, 2017, 19, e199.	4.3	18
58	A skin cancer prevention photoageing intervention for secondary schools in Brazil delivered by medical students: protocol for a randomised controlled trial. BMJ Open, 2018, 8, e018299.	1.9	17
59	Facial-Aging App Availability in Waiting Rooms as a Potential Opportunity for Skin Cancer Prevention. JAMA Dermatology, 2018, 154, 1085.	4.1	15
60	Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study. Journal of Medical Internet Research, 2021, 23, e21695.	4.3	15
61	Primary leiomyosarcoma of the skin: a comprehensive review on diagnosis and treatment. Medical Oncology, 2018, 35, 135.	2.5	14
62	A Medical Student–Delivered Smoking Prevention Program, Education Against Tobacco, for Secondary Schools in Brazil: Study Protocol for a Randomized Trial. JMIR Research Protocols, 2017, 6, e16.	1.0	14
63	2A-DUB/Mysm1 Regulates Epidermal Development in Part by Suppressing p53-Mediated Programs. International Journal of Molecular Sciences, 2018, 19, 687.	4.1	12
64	Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology. Minerva Urology and Nephrology, 2022, 74, .	2.5	12
65	A smoking prevention photoageing intervention for secondary schools in Brazil delivered by medical students: protocol for a randomised trial. BMJ Open, 2017, 7, e018589.	1.9	11
66	The prognostic value of sentinel lymph nodes on distant metastasis–free survival in patients with high-risk squamous cell carcinoma. European Journal of Cancer, 2019, 111, 107-115.	2.8	11
67	Time-updated resting heart rate predicts mortality in patients with COPD. Clinical Research in Cardiology, 2020, 109, 776-786.	3.3	11
68	Long-term recurrence rates of actinic keratosis: A systematic review and pooled analysis of randomized controlled trials. Journal of the American Academy of Dermatology, 2022, 86, 1116-1119.	1.2	11
69	A Dermatologist's Ammunition in the War Against Smoking: A Photoaging App. Journal of Medical Internet Research, 2017, 19, e326.	4.3	10
70	Implementation of cell‑free tumor DNA sequencing from the cerebrospinal fluid to guide treatment in a patient with primary leptomeningeal melanoma: A case report. Molecular and Clinical Oncology, 2018, 9, 58-61.	1.0	8
71	Frequent Occurrence of NRAS and BRAF Mutations in Human Acral Naevi. Cancers, 2019, 11, 546.	3.7	8
72	A Face-Aging Smoking Prevention/Cessation Intervention for Nursery School Students in Germany: An Appearance-Focused Interventional Study. International Journal of Environmental Research and Public Health, 2018, 15, 1656.	2.6	7

#	Article	IF	CITATIONS
73	Logistics Workers Are a Key Factor for SARS-CoV-2 Spread in Brazilian Small Towns: Case-Control Study. JMIR Public Health and Surveillance, 2021, 7, e30406.	2.6	6
74	A Smoking Prevention Program Delivered by Medical Students to Secondary Schools in Brazil Called "Education Against Tobaccoâ€: Randomized Controlled Trial. Journal of Medical Internet Research, 2019, 21, e12854.	4.3	6
75	Patient Perception of Mobile Phone Apps for the Care and Prevention of Sexually Transmitted Diseases: Cross-Sectional Study. JMIR MHealth and UHealth, 2020, 8, e16517.	3.7	5
76	Salivary cortisol levels and anxiety in melanoma patients undergoing sentinel lymph node excision under local anesthesia versus general anesthesia: a prospective study. World Journal of Surgical Oncology, 2020, 18, 53.	1.9	4
77	Otto Mennicke (1876–) and the first description of skull base anomalies causing cerebellar tonsillar ectopia: one of the first mentions of the Chiari I malformation. Child's Nervous System, 2017, 33, 825-827.	1.1	3
78	Facial-Aging Mobile Apps for Smoking Prevention in Secondary Schools in Brazil: Appearance-Focused Interventional Study. JMIR Public Health and Surveillance, 2018, 4, e10234.	2.6	3
79	Intraoperative use of LIGHTVISION: a novel fluorescence navigation system using indocyanine green for sentinel lymph node biopsy in skin cancer patients. European Journal of Dermatology, 2018, 28, 532-534.	0.6	2
80	Process Evaluation of a Medical Student–Delivered Smoking Prevention Program for Secondary Schools: Protocol for the Education Against Tobacco Cluster Randomized Trial. JMIR Research Protocols, 2019, 8, e13508.	1.0	2
81	EAT-Brazil Award for Tobacco Control: a brief description of its first edition. Revista Da Associação Médica Brasileira, 2019, 65, 775-778.	0.7	1
82	Patient-Centered Mobile Health Data Management Solution for the German Health Care System (The) Tj ETQq0 () 0 rgBT /C	Verlock 10 T

83	Hautkrebserkennung: Wie künstliche Intelligenz die Diffenzialdiagnose schÃĦt. , 0, , .		0
84	Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. European Journal of Cancer, 2022, , .	2.8	0