
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/412890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The electrochemical performance of melt-spun C14-Laves type Ti Zr-based alloy. International Journal of Hydrogen Energy, 2020, 45, 1297-1303.	3.8	9
2	Hydrides of Laves type Ti–Zr alloys with enhanced H storage capacity as advanced metal hydride battery anodes. Journal of Alloys and Compounds, 2020, 828, 154354.	2.8	34
3	Studies of Zr-based C15 type metal hydride battery anode alloys prepared by rapid solidification. Journal of Alloys and Compounds, 2019, 804, 527-537.	2.8	13
4	A BCC-C14 alloy suitable for EV application of Ni/MH battery. International Journal of Hydrogen Energy, 2019, 44, 29338-29343.	3.8	7
5	Effects of lithium addition in AB2 metal hydride alloy by solid-state diffusion. International Journal of Hydrogen Energy, 2019, 44, 29319-29328.	3.8	3
6	Capacity degradation of Laves phase-related body-centered-cubic solid solution metal hydride alloys in battery. Journal of Alloys and Compounds, 2019, 792, 260-266.	2.8	3
7	Effects of rare-earth element additions to Laves phase-related body-centered-cubic solid solution metal hydride alloys: Thermodynamic and electrochemical properties. Journal of Alloys and Compounds, 2018, 737, 174-183.	2.8	12
8	Performance Comparison of Rechargeable Batteries for Stationary Applications (Ni/MH vs. Ni–Cd and) Tj ETQqC	0 0 0 rgBT	/Overlock 10
9	Research in Nickel/Metal Hydride Batteries 2017. Batteries, 2018, 4, 9.	2.1	17
10	Properties of Nickel Metal Hydride Battery Using Molybdenum-added Superlattice Metal Hydride Alloy. Material Science and Engineering With Advanced Research, 2018, 2, 1-14.	0.3	3
11	Fabrications of High-Capacity Alpha-Ni(OH)2. Batteries, 2017, 3, 6.	2.1	44
12	Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy. Batteries, 2017, 3, 19.	2.1	3
13	Comparison of C14- and C15-Predomiated AB2 Metal Hydride Alloys for Electrochemical Applications. Batteries, 2017, 3, 22.	2.1	29
14	Reviews of European Patents on Nickel/Metal Hydride Batteries. Batteries, 2017, 3, 25.	2.1	8

- Increase in the Surface Catalytic Ability by Addition of Palladium in C14 Metal Hydride Alloy. Batteries,
 2017, 3, 26.
- 16C14 Laves Phase Metal Hydride Alloys for Ni/MH Batteries Applications. Batteries, 2017, 3, 27.2.125

17	Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 2. Ni/MH Battery Performance and Failure Mechanisms. Batteries, 2017, 3, 28.	2.1	4
18	Cell Performance Comparison between C14- and C15-Predomiated AB2 Metal Hydride Alloys. Batteries, 2017, 3, 29.	2.1	13

#	Article	IF	CITATIONS
19	Effects of Alkaline Pre-Etching to Metal Hydride Alloys. Batteries, 2017, 3, 30.	2.1	8
20	Comparison among Constituent Phases in Superlattice Metal Hydride Alloys for Battery Applications. Batteries, 2017, 3, 34.	2.1	9
21	Performance Comparison between AB5 and Superlattice Metal Hydride Alloys in Sealed Cells. Batteries, 2017, 3, 35.	2.1	8
22	Effects of Boron-Incorporation in a V-Containing Zr-Based AB2 Metal Hydride Alloy. Batteries, 2017, 3, 36.	2.1	8
23	A Ni/MH Pouch Cell with High-Capacity Ni(OH)2. Batteries, 2017, 3, 38.	2.1	6
24	Electron Backscatter Diffraction Studies on the Formation of Superlattice Metal Hydride Alloys. Batteries, 2017, 3, 40.	2.1	3
25	Effects of Cs2CO3 Additive in KOH Electrolyte Used in Ni/MH Batteries. Batteries, 2017, 3, 41.	2.1	6
26	Reviews on Chinese Patents Regarding the Nickel/Metal Hydride Battery. Batteries, 2017, 3, 24.	2.1	9
27	Ionic Liquid-Based Non-Aqueous Electrolytes for Nickel/Metal Hydride Batteries. Batteries, 2017, 3, 4.	2.1	28
28	A Technical Report of the Robust Affordable Next Generation Energy Storage System-BASF Program. Batteries, 2016, 2, 2.	2.1	40
29	Capacity Degradation Mechanisms in Nickel/Metal Hydride Batteries. Batteries, 2016, 2, 3.	2.1	50
30	Microstructures of the Activated Si-Containing AB2 Metal Hydride Alloy Surface by Transmission Electron Microscope. Batteries, 2016, 2, 4.	2.1	8
31	Electrochemical Open-Circuit Voltage and Pressure-Concentration-Temperature Isotherm Comparison for Metal Hydride Alloys. Batteries, 2016, 2, 6.	2.1	19
32	Studies on Incorporation of Mg in Zr-Based AB2 Metal Hydride Alloys. Batteries, 2016, 2, 11.	2.1	18
33	Studies on the Synergetic Effects in Multi-Phase Metal Hydride Alloys. Batteries, 2016, 2, 15.	2.1	22
34	New Type of Alkaline Rechargeable Battery—Ni-Ni Battery. Batteries, 2016, 2, 16.	2.1	6
35	Failure Mechanisms of Nickel/Metal Hydride Batteries with Cobalt-Substituted Superlattice Hydrogen-Absorbing Alloy Anodes at 50 °C. Batteries, 2016, 2, 20.	2.1	17
36	Reviews on the Japanese Patent Applications Regarding Nickel/Metal Hydride Batteries. Batteries, 2016, 2, 21.	2.1	21

#	Article	IF	CITATIONS
37	Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys. Batteries, 2016, 2, 22.	2.1	8
38	First-Principles Point Defect Models for Zr7Ni10 and Zr2Ni7 Phases. Batteries, 2016, 2, 23.	2.1	3
39	Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe,) Tj ETQq1	1 0.7843 2.1	14 rgBT /Ov
40	The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys. Batteries, 2016, 2, 25.	2.1	25
41	Microstructure Investigation on Metal Hydride Alloys by Electron Backscatter Diffraction Technique. Batteries, 2016, 2, 26.	2.1	16
42	Studies on MgNi-Based Metal Hydride Electrode with Aqueous Electrolytes Composed of Various Hydroxides. Batteries, 2016, 2, 27.	2.1	12
43	Research in Nickel/Metal Hydride Batteries 2016. Batteries, 2016, 2, 31.	2.1	13
44	Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 1. Structural, Hydrogen Storage, and Electrochemical Properties. Batteries, 2016, 2, 34.	2.1	7
45	Reviews on the U.S. Patents Regarding Nickel/Metal Hydride Batteries. Batteries, 2016, 2, 10.	2.1	37
46	Hydrogenated amorphous silicon thin film anode for proton conducting batteries. Journal of Power Sources, 2016, 302, 31-38.	4.0	26
47	Effects of Vanadium/Nickel Contents in Laves Phase-Related Body-Centered-Cubic Solid Solution Metal Hydride Alloys. Batteries, 2015, 1, 34-53.	2.1	15
48	Effects of Salt Additives to the KOH Electrolyte Used in Ni/MH Batteries. Batteries, 2015, 1, 54-73.	2.1	18
49	Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope. Materials, 2015, 8, 4618-4630.	1.3	5
50	Structure, Hydrogen Storage, and Electrochemical Properties of Body-Centered-Cubic Ti40V30Cr15Mn13X2 Alloys (X = B, Si, Mn, Ni, Zr, Nb, Mo, and La). Batteries, 2015, 1, 74-90.	2.1	13
51	Structural, hydrogen storage, and electrochemical properties of Laves phase-related body-centered-cubic solid solution metal hydride alloys. International Journal of Hydrogen Energy, 2014, 39, 21489-21499.	3.8	43
52	Hydrogenation of AB5 and AB2 metal hydride alloys studied by in situ X-ray diffraction. Journal of Alloys and Compounds, 2014, 616, 300-305.	2.8	11
53	Effects of various annealing conditions on (Nd, Mg, Zr)(Ni, Al, Co)3.74 metal hydride alloys. Journal of Power Sources, 2014, 248, 147-153.	4.0	36
54	The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications. Materials, 2013, 6, 4574-4608.	1.3	159

#	Article	IF	CITATIONS
55	Studies of Co, Al, and Mn substitutions in NdNi5 metal hydride alloys. Journal of Alloys and Compounds, 2012, 543, 90-98.	2.8	27
56	Compositional optimization of vanadium-free hypo-stoichiometric AB2 metal hydride alloy for Ni/MH battery application. Journal of Alloys and Compounds, 2012, 510, 97-106.	2.8	31
57	Effects of annealing on Zr8Ni19X2 (X=Ni, Mg, Al, Sc, V, Mn, Co, Sn, La, and Hf): Structural characteristics. Journal of Alloys and Compounds, 2012, 516, 144-152.	2.8	19
58	Effects of annealing and stoichiometry to (Nd, Mg)(Ni, Al)3.5 metal hydride alloys. Journal of Power Sources, 2012, 215, 152-159.	4.0	56
59	Gaseous phase hydrogen storage and electrochemical properties of Zr8Ni21, Zr7Ni10, Zr9Ni11, and ZrNi metal hydride alloys. International Journal of Hydrogen Energy, 2012, 37, 16042-16055.	3.8	34
60	Determination of C14/C15 phase abundance in Laves phase alloys. Materials Chemistry and Physics, 2012, 136, 520-527.	2.0	37
61	Effects of annealing on Zr8Ni19X2 (XÂ=ÂNi, Mg, Al, Sc, V, Mn, Co, Sn, La, and Hf): Hydrogen storage and electrochemical properties. International Journal of Hydrogen Energy, 2012, 37, 8418-8427.	3.8	23
62	Studies of copper as a modifier in C14-predominant AB2 metal hydride alloys. Journal of Power Sources, 2012, 204, 205-212.	4.0	25
63	Effects of Al- and Mn-contents in the negative MH alloy on the self-discharge and long-term storage properties of Ni/MH battery. Journal of Power Sources, 2012, 213, 128-139.	4.0	35
64	Phase abundances in AB2 metal hydride alloys and their correlations to various properties. Journal of Alloys and Compounds, 2011, 509, 2277-2284.	2.8	51
65	Effects of Mo additive on the structure and electrochemical properties of low-temperature AB5 metal hydride alloys. Journal of Alloys and Compounds, 2011, 509, 3995-4001.	2.8	56
66	Effect of molybdenum content on structural, gaseous storage, and electrochemical properties of C14-predominant AB2 metal hydride alloys. Journal of Power Sources, 2011, 196, 8815-8821.	4.0	44
67	Optimization of Co-content in C14 Laves phase multi-component alloys for NiMH battery application. Journal of Alloys and Compounds, 2010, 489, 202-210.	2.8	28
68	Effects of aluminum substitution in C14-rich multi-component alloys for NiMH battery application. Journal of Alloys and Compounds, 2010, 490, 282-292.	2.8	50
69	Study of AB2 alloy electrodes for Ni/MH battery prepared by centrifugal casting and gas atomization. Journal of Alloys and Compounds, 2010, 496, 669-677.	2.8	16
70	Studies of Ti1.5Zr5.5V0.5(MxNi1â^'x)9.5 (M=Cr, Mn, Fe, Co, Cu, Al): Part 1. Structural characteristics. Journal of Alloys and Compounds, 2010, 501, 236-244.	2.8	17
71	The correlation of C14/C15 phase abundance and electrochemical properties in the AB2 alloys. Journal of Alloys and Compounds, 2010, 506, 841-848.	2.8	72
72	Structural and electrochemical properties of Ti1.5Zr5.5VxNi10â^'x. International Journal of Hydrogen Energy, 2009, 34, 8695-8706.	3.8	27

#	Article	IF	CITATIONS
73	Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy. Journal of Alloys and Compounds, 2009, 471, 371-377.	2.8	94
74	Roles of Ni, Cr, Mn, Sn, Co, and Al in C14 Laves phase alloys for NiMH battery application. Journal of Alloys and Compounds, 2009, 476, 774-781.	2.8	32
75	Pressure–composition–temperature hysteresis in C14 Laves phase alloys: Part 1. Simple ternary alloys. Journal of Alloys and Compounds, 2009, 480, 428-433.	2.8	76
76	Structural and electrochemical properties of TixZr7â^'xNi10. Journal of Alloys and Compounds, 2009, 480, 521-528.	2.8	32
77	Structural, thermodynamic, and electrochemical properties of TixZr1â^x(VNiCrMnCoAl)2 C14 Laves phase alloys. Journal of Alloys and Compounds, 2008, 464, 238-247.	2.8	67
78	High-Quality YBa2Cu3O7-ÎThin Films Grown on SrLaAlO4(001) and (1118) Substrates. Japanese Journal of Applied Physics, 1992, 31, L402-L405.	0.8	11
79	Epitaxial YBCO(F) films directly deposited on sapphire and its microwave properties. Cryogenics, 1992, 32, 587-591.	0.9	0