
Federica Collino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128879/publications.pdf Version: 2024-02-01

FEDERICA COLLINO

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 1053-1067.	3.0	1,144
2	Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche. Cancer Research, 2011, 71, 5346-5356.	0.4	777
3	Microvesicles Derived from Adult Human Bone Marrow and Tissue Specific Mesenchymal Stem Cells Shuttle Selected Pattern of miRNAs. PLoS ONE, 2010, 5, e11803.	1.1	554
4	Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury. PLoS ONE, 2012, 7, e33115.	1.1	526
5	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	5.5	314
6	Microvesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Inhibit Tumor Growth. Stem Cells and Development, 2013, 22, 758-771.	1.1	264
7	AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. Journal of the American Society of Nephrology: JASN, 2015, 26, 2349-2360.	3.0	212
8	Human Liver Stem Cell-Derived Microvesicles Inhibit Hepatoma Growth in SCID Mice by Delivering Antitumor MicroRNAs. Stem Cells, 2012, 30, 1985-1998.	1.4	170
9	Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia, 2016, 30, 2221-2231.	3.3	170
10	CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis. American Journal of Pathology, 2006, 169, 2223-2235.	1.9	161
11	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	1.6	159
12	Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Reviews and Reports, 2017, 13, 226-243.	5.6	129
13	Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. American Journal of Physiology - Renal Physiology, 2008, 294, F1185-F1194.	1.3	126
14	Extracellular Vesicles Released from Mesenchymal Stromal Cells Modulate miRNA in Renal Tubular Cells and Inhibit ATP Depletion Injury. Stem Cells and Development, 2014, 23, 1809-1819.	1.1	121
15	Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. International Journal of Molecular Sciences, 2021, 22, 3851.	1.8	113
16	Isolation and Characterization of Resident Mesenchymal Stem Cells in Human Glomeruli. Stem Cells and Development, 2009, 18, 867-880.	1.1	110
17	Cardiac Overexpression of Melusin Protects From Dilated Cardiomyopathy Due to Long-Standing Pressure Overload. Circulation Research, 2005, 96, 1087-1094.	2.0	101
18	Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells. Oncotarget, 2015, 6, 7959-7969.	0.8	77

Federica Collino

#	Article	IF	CITATIONS
19	Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133 ⁺ progenitors through Oct4/miR-145 balance. American Journal of Physiology - Renal Physiology, 2012, 302, F116-F128.	1.3	71
20	Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles on Tumor Growth. Frontiers in Immunology, 2014, 5, 382.	2.2	55
21	Oncogenic micro-RNAs and Renal Cell Carcinoma. Frontiers in Oncology, 2014, 4, 49.	1.3	55
22	Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investigation, 2017, 4, 75-75.	1.3	54
23	Serum-derived extracellular vesicles (EVs) impact on vascular remodeling and prevent muscle damage in acute hind limb ischemia. Scientific Reports, 2017, 7, 8180.	1.6	53
24	Role of CD133 Molecule in Wnt Response and Renal Repair. Stem Cells Translational Medicine, 2018, 7, 283-294.	1.6	50
25	MicroRNAs and Mesenchymal Stem Cells. Vitamins and Hormones, 2011, 87, 291-320.	0.7	45
26	Adipose-Derived Mesenchymal Stromal Cells Under Hypoxia: Changes in Extracellular Vesicles Secretion and Improvement of Renal Recovery after Ischemic Injury. Cellular Physiology and Biochemistry, 2019, 52, 1463-1483.	1.1	44
27	Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2019, 20, 2381.	1.8	40
28	Exosomes Recovered From the Plasma of COVID-19 Patients Expose SARS-CoV-2 Spike-Derived Fragments and Contribute to the Adaptive Immune Response. Frontiers in Immunology, 2021, 12, 785941.	2.2	38
29	Nephrin and endothelial injury. Current Opinion in Nephrology and Hypertension, 2009, 18, 3-8.	1.0	34
30	Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model. Cells, 2020, 9, 453.	1.8	29
31	Adipose Mesenchymal Cells-Derived EVs Alleviate DOCA-Salt-Induced Hypertension by Promoting Cardio-Renal Protection. Molecular Therapy - Methods and Clinical Development, 2020, 16, 63-77.	1.8	27
32	Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS ONE, 2016, 11, e0159163.	1.1	22
33	Renal CD133+/CD73+ Progenitors Produce Erythropoietin under Hypoxia and Prolyl Hydroxylase Inhibition. Journal of the American Society of Nephrology: JASN, 2013, 24, 1234-1241.	3.0	21
34	Urinary Extracellular Vesicles: Uncovering the Basis of the Pathological Processes in Kidney-Related Diseases. International Journal of Molecular Sciences, 2021, 22, 6507.	1.8	21
35	Epithelial–mesenchymal transition of ovarian tumor cells induces an angiogenic monocyte cell population. Experimental Cell Research, 2009, 315, 2982-2994.	1.2	18
36	Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 1122.	1.3	18

Federica Collino

#	Article	IF	CITATIONS
37	Dissecting Paracrine Effectors for Mesenchymal Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 137-152.	0.6	17
38	CD133 ⁺ cells as a therapeutic target for kidney diseases. Expert Opinion on Therapeutic Targets, 2012, 16, 157-165.	1.5	15
39	Muscle functional recovery is driven by extracellular vesicles combined with muscle extracellular matrix in a volumetric muscle loss murine model. Biomaterials, 2021, 269, 120653.	5.7	15
40	Proteomics of cell–cell interactions in health and disease. Proteomics, 2016, 16, 328-344.	1.3	12
41	Proteomics in the World of Induced Pluripotent Stem Cells. Cells, 2019, 8, 703.	1.8	10
42	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Pass through the Filtration Barrier and Protect Podocytes in a 3D Glomerular Model under Continuous Perfusion. Tissue Engineering and Regenerative Medicine, 2021, 18, 549-560.	1.6	10
43	Serum Derived Extracellular Vesicles Mediated Delivery of Synthetic miRNAs in Human Endothelial Cells. Frontiers in Molecular Biosciences, 2021, 8, 636587.	1.6	9
44	Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact, 2021, 23, 100330.	2.4	8
45	miRNA Expression in Mesenchymal Stem Cells. Current Pathobiology Reports, 2014, 2, 101-107.	1.6	6
46	Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. International Journal of Molecular Sciences, 2022, 23, 2906.	1.8	1
47	Analysis and Clustering of MicroRNA Array: A New Efficient and Reliable Computational Method. Advances in Experimental Medicine and Biology, 2011, 696, 679-688.	0.8	0