List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128869/publications.pdf Version: 2024-02-01

	57631	48187
8,644	44	88
citations	h-index	g-index
113	113	8340
docs citations	times ranked	citing authors
	citations 113	8,64444citationsh-index113113

#	Article	IF	CITATIONS
1	Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.	13.7	1,190
2	Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS ONE, 2009, 4, e6524.	1.1	568
3	Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19529-19536.	3.3	548
4	Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 2010, 8, e1000475.	2.6	348
5	Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genetics, 2012, 8, e1003100.	1.5	266
6	Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics, 2015, 47, 1141-1148.	9.4	263
7	A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Research, 2009, 19, 510-519.	2.4	261
8	Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17312-17317.	3.3	230
9	Signatures of Diversifying Selection in European Pig Breeds. PLoS Genetics, 2013, 9, e1003453.	1.5	228
10	Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics. Molecular Biology and Evolution, 2013, 30, 824-832.	3.5	196
11	The development and characterization of a 60K SNP chip for chicken. BMC Genomics, 2011, 12, 274.	1.2	185
12	Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications, 2016, 7, 10474.	5.8	172
13	A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genomics, 2012, 13, 586.	1.2	150
14	Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology, 2013, 14, R107.	13.9	137
15	Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5, 4392.	5.8	137
16	Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA. PLoS ONE, 2011, 6, e14782.	1.1	135
17	Linkage Disequilibrium Decay and Haplotype Block Structure in the Pig. Genetics, 2008, 179, 569-579.	1.2	118
18	Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics, 2013, 14, 449.	1.2	118

#	Article	IF	CITATIONS
19	Genomeâ€wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology, 2013, 22, 856-866.	2.0	117
20	Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution, 2017, 49, 71.	1.2	114
21	Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17231-17238.	3.3	101
22	Deleterious alleles in the context of domestication, inbreeding, and selection. Evolutionary Applications, 2019, 12, 6-17.	1.5	94
23	Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution, 2008, 40, 103-28.	1.2	89
24	Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 2013, 14, 106.	2.7	87
25	Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC Genomics, 2015, 16, 330.	1.2	85
26	Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution, 2008, 40, 103-128.	1.2	84
27	Atlantic salmon eggs favour sperm in competition that have similar major histocompatibility alleles. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 559-566.	1.2	83
28	Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity, 2017, 118, 169-176.	1.2	80
29	Signatures of Selection in the Genomes of Commercial and Non-Commercial Chicken Breeds. PLoS ONE, 2012, 7, e32720.	1.1	77
30	Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research, 2015, 25, 970-981.	2.4	77
31	Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genetics, 2009, 10, 86.	2.7	72
32	The Genome of Winter Moth (<i>Operophtera brumata</i>) Provides a Genomic Perspective on Sexual Dimorphism and Phenology. Genome Biology and Evolution, 2015, 7, 2321-2332.	1.1	70
33	Distribution and Functionality of Copy Number Variation across European Cattle Populations. Frontiers in Genetics, 2017, 8, 108.	1.1	65
34	Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Frontiers in Genetics, 2015, 6, 314.	1.1	64
35	Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genomics, 2012, 13, 391.	1.2	63
36	Accuracy of genomic prediction using imputed wholeâ€genome sequence data in white layers. Journal of Animal Breeding and Genetics, 2016, 133, 167-179.	0.8	61

#	Article	IF	CITATIONS
37	Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Molecular Ecology, 2013, 22, 41-55.	2.0	59
38	Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110, 321-330.	1.2	58
39	Rapid Evolution of the MH Class I Locus Results in Different Allelic Compositions in Recently Diverged Populations of Atlantic Salmon. Molecular Biology and Evolution, 2005, 22, 1095-1106.	3.5	57
40	Hotspots of recent hybridization between pigs and wild boars in Europe. Scientific Reports, 2018, 8, 17372.	1.6	53
41	Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent <i>Sus scrofa</i> populations. Molecular Ecology, 2014, 23, 4089-4102.	2.0	52
42	Identification of high utility SNPs for population assignment and traceability purposes in the pig using high-throughput sequencing. Animal Genetics, 2011, 42, 613-620.	0.6	49
43	Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genetics, 2013, 14, 43.	2.7	49
44	Extent of linkage disequilibrium in chicken. Cytogenetic and Genome Research, 2007, 117, 338-345.	0.6	47
45	A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evolutionary Biology, 2017, 17, 201.	3.2	47
46	Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks. BMC Evolutionary Biology, 2012, 12, 45.	3.2	46
47	Loss of function mutations in essential genes cause embryonic lethality in pigs. PLoS Genetics, 2019, 15, e1008055.	1.5	46
48	Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genomics, 2013, 14, 148.	1.2	45
49	Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics, 2009, 10, 374.	1.2	44
50	Whole-genome sequence analysis reveals differences in population management and selection of European low-input pig breeds. BMC Genomics, 2014, 15, 601.	1.2	44
51	Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 861-869.	1.2	42
52	Genomic diversity and differentiation of a managed island wild boar population. Heredity, 2016, 116, 60-67.	1.2	41
53	Patterns of variability at the major histocompatibility class II alpha locus in Atlantic salmon contrast with those at the class I locus. Immunogenetics, 2005, 57, 16-24.	1.2	40
54	Preliminary insight into the age and origin of the Labeobarbus fish species flock from Lake Tana (Ethiopia) using the mtDNA cytochrome b gene. Molecular Phylogenetics and Evolution, 2010, 54, 336-343.	1.2	40

#	Article	IF	CITATIONS
55	A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Molecular Phylogenetics and Evolution, 2016, 101, 303-313.	1.2	39
56	Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome. PLoS Genetics, 2018, 14, e1007661.	1.5	39
57	Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nature Communications, 2019, 10, 1992.	5.8	38
58	A systematic survey to identify lethal recessive variation in highly managed pig populations. BMC Genomics, 2017, 18, 858.	1.2	37
59	The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evolutionary Applications, 2020, 13, 330-341.	1.5	36
60	A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes. BMC Genomics, 2010, 11, 647.	1.2	35
61	Development of a genetic tool for product regulation in the diverse British pig breed market. BMC Genomics, 2012, 13, 580.	1.2	35
62	Systematic differences in the response of genetic variation to pedigree and genome-based selection methods. Heredity, 2014, 113, 503-513.	1.2	34
63	Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds. Heredity, 2010, 105, 290-298.	1.2	33
64	East Asian contributions to Dutch traditional and western commercial chickens inferred from mtDNA analysis. Animal Genetics, 2011, 42, 125-133.	0.6	32
65	Testing models of speciation from genome sequences: divergence and asymmetric admixture in <scp>I</scp> sland <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>A</scp> sian <i><scp>S</scp>us</i> species during the <scp>P</scp> lioâ€ <scp>P</scp> leistocene climatic fluctuations. Molecular Ecology, 2014, 23, 5566-5574.	2.0	32
66	Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Molecular Ecology, 2020, 29, 1103-1119.	2.0	31
67	Review of the initial validation and characterization of a 3K chicken SNP array. World's Poultry Science Journal, 2008, 64, 219-226.	1.4	30
68	The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity. Heredity, 2018, 121, 564-578.	1.2	29
69	Evolutionary origin of Lake Tana's (Ethiopia) small Barbus species: indications of rapid ecological divergence and speciation. Animal Biology, 2007, 57, 39-48.	0.6	28
70	A survey of functional genomic variation in domesticated chickens. Genetics Selection Evolution, 2018, 50, 17.	1.2	27
71	TRES: Identification of Discriminatory and Informative SNPs from Population Genomic Data: Figure 1 Journal of Heredity, 2015, 106, 672-676.	1.0	26
72	Artificial selection on introduced Asian haplotypes shaped the genetic architecture in European commercial pigs. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152019.	1.2	25

#	Article	IF	CITATIONS
73	Tempo of speciation in a butterfly genus from the Southeast Asian tropics, inferred from mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 2004, 31, 1181-1196.	1.2	24
74	Shallow genetic divergence and species delineations in the endemic <i>Labeobarbus</i> species flock of Lake Tana, Ethiopia. Journal of Fish Biology, 2015, 87, 1191-1208.	0.7	24
75	Phylogenetic patterns in larval host plant and ant association of Indo-Australian Arhopalini butterflies (Lycaenidae: Theclinae). Biological Journal of the Linnean Society, 2005, 84, 225-241.	0.7	22
76	Adaptive Evolution of Toll-Like Receptors (TLRs) in the Family Suidae. PLoS ONE, 2015, 10, e0124069.	1.1	22
77	Farmâ€byâ€farm analysis of microsatellite, mt <scp>DNA</scp> and <scp>SNP</scp> genotype data reveals inbreeding and crossbreeding as threats to the survival of a native <scp>S</scp> panish pig breed. Animal Genetics, 2013, 44, 259-266.	0.6	21
78	The impact of genome editing on the introduction of monogenic traits in livestock. Genetics Selection Evolution, 2018, 50, 18.	1.2	21
79	pCADD: SNV prioritisation in Sus scrofa. Genetics Selection Evolution, 2020, 52, 4.	1.2	21
80	Gene Expression in Chicken Reveals Correlation with Structural Genomic Features and Conserved Patterns of Transcription in the Terrestrial Vertebrates. PLoS ONE, 2010, 5, e11990.	1.1	20
81	Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Frontiers in Genetics, 2014, 5, 442.	1.1	19
82	Parallel Genetic Origin of Foot Feathering in Birds. Molecular Biology and Evolution, 2020, 37, 2465-2476.	3.5	19
83	Genetic consequences of longâ€ŧerm small effective population size in the critically endangered pygmy hog. Evolutionary Applications, 2021, 14, 710-720.	1.5	19
84	Impact of merging commercial breeding lines on the genetic diversity of Landrace pigs. Genetics Selection Evolution, 2019, 51, 60.	1.2	18
85	A Novel Loss-of-Function Variant in Transmembrane Protein 263 (TMEM263) of Autosomal Dwarfism in Chicken. Frontiers in Genetics, 2018, 9, 193.	1.1	17
86	Accelerated discovery of functional genomic variation in pigs. Genomics, 2021, 113, 2229-2239.	1.3	16
87	Varying diseaseâ€mediated selection at different lifeâ€history stages of Atlantic salmon in fresh water. Evolutionary Applications, 2011, 4, 749-762.	1.5	15
88	Fragmentation and Translocation Distort the Genetic Landscape of Ungulates: Red Deer in the Netherlands. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	15
89	Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes. Systematic Entomology, 2004, 29, 115-131.	1.7	14
90	Distinguishing migration events of different timing for wild boar in the Balkans. Journal of Biogeography, 2017, 44, 259-270.	1.4	14

#	Article	IF	CITATIONS
91	The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (<i>Sus) Tj ETQq1</i>	l 0.784314 rş 0.8	gBT_/Overlock
92	Increased Mycoplasma hyopneumoniae Disease Prevalence in Domestic Hybrids Among Free-Living Wild Boar. EcoHealth, 2015, 12, 571-579.	0.9	11
93	Early and late feathering in turkey and chicken: same gene but different mutations. Genetics Selection Evolution, 2018, 50, 7.	1.2	11
94	Genomic analysis of a Nile tilapia strain selected for salinity tolerance shows signatures of selection and hybridization with blue tilapia (Oreochromis aureus). Aquaculture, 2022, 560, 738527.	1.7	11
95	Evolution of Tibetan wild boars. Nature Genetics, 2015, 47, 188-189.	9.4	10
96	Domesticated species form a treasure-trove for molecular characterization of Mendelian traits by exploiting the specific genetic structure of these species in across-breed genome wide association studies. Heredity, 2012, 109, 1-3.	1.2	9
97	Evolutionary patterns of Toll-like receptor signaling pathway genes in the Suidae. BMC Evolutionary Biology, 2016, 16, 33.	3.2	8
98	Regional regulation of transcription in the chicken genome. BMC Genomics, 2010, 11, 28.	1.2	7
99	Genome-wide candidate regions for selective sweeps revealed through massive parallel sequencing of DNA across ten turkey populations. BMC Genetics, 2014, 15, 117.	2.7	7
100	On the relationship between an Asian haplotype on chromosome 6 that reduces androstenone levels in boars and the differential expression of SULT2A1 in the testis. BMC Genetics, 2014, 15, 4.	2.7	7
101	Evidence for adaptation of porcine Toll-like receptors. Immunogenetics, 2016, 68, 179-189.	1.2	7
102	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. PLoS Genetics, 2020, 16, e1009027.	1.5	7
103	Detection of a Frameshift Deletion in the SPTBN4 Gene Leads to Prevention of Severe Myopathy and Postnatal Mortality in Pigs. Frontiers in Genetics, 2019, 10, 1226.	1.1	6
104	Host genetic heterozygosity and age are important determinants of porcine circovirus type 2 disease prevalence in European wild boar. European Journal of Wildlife Research, 2014, 60, 803-810.	0.7	4
105	A Genomic Perspective on Wild Boar Demography and Evolution. , 0, , 376-387.		3
106	The Visayan Warty Pig (<i>Sus cebifrons</i>) Genome Provides Insight Into Chromosome Evolution and Sensory Adaptation in Pigs. Molecular Biology and Evolution, 2022, 39, .	3.5	3
107	Genomic consequences of a century of inbreeding and isolation in the Danish wild boar population. Evolutionary Applications, 2022, 15, 954-966.	1.5	0
108	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0

#	Article	IF	CITATIONS
109	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0
110	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0
111	Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. , 2020, 16, e1009027.		0