Chengbo Zhai

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4128790/publications.pdf
Version: 2024-02-01


```
        On the nonlinear matrix equation Xp=A+â^fi=1mMiâ^-(B+Xâ^1)â^1Mi. Linear and Multilinear Algebra, 2022, 70,
        4467-4482.
```

Existence results for a fractional SchrÃๆdingerâe"Poisson equation with concaveâe"convex nonlinearity in â,3. Mathematical Methods in the Applied Sciences, 2022, 45, 1752-1766.

Solvability for Two Forms of Nonlinear Matrix Equations. Bulletin of the Iranian Mathematical Society, 2021, 47, 1107-1120.

Some extension results on cone b-metric spaces over Banach algebras via \$\$varphi \$\$-operator. Journal of Analysis, 2021, 29, 281-295.

Solutions to a gauged SchrÃ τ dinger equation with concaveâ $€$ "convex nonlinearities without (AR) condition. Applicable Analysis, 2021, 100, 1286-1300.

An Integral Boundary Value Problem of Fractional Differential Equations with a Sign-Changed Parameter in Banach Spaces. Complexity, 2021, 2021, 1-10.

Investigation of positive definite solution of nonlinear matrix equation $\$ \$ X^{\wedge}\{p\}=Q+s u m$ olimits
$7 \quad$ _ $\{i=1\}^{\wedge} m A _i^{\wedge} \wedge^{\wedge} \chi^{\wedge}\{$ delta $\} A _i \$ \$$. Computational and Applied Mathematics, 2021, 40, 1.

Stability analysis of generalized neutral fractional differential systems with time delays. Applied Mathematics Letters, 2021, 116, 106987.

Solutions for a System of Hadamard Fractional Differential Equations with Integral Conditions.
Solutions for a System of Hadamard Fractional Differential Equations
Numerical Functional Analysis and Optimization, 2020, 41, 209-229.
 <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" display="inline" id="dle22"
10 altimg="si2.svg">mml:mrowmml:msupmml:mrowmml:miH</mml:mi></mml:mrow>mml:mrow<mml:mn $1</ \mathrm{mnnt}: m n></ \mathrm{mn}$ Applied Mathematics Letters, 2020, 100, 106028.
11 Solutions to fractional differential equations involving integral boundary conditions. Integral
Transforms and Special Functions, 2020, 31, 506-518.

Stability analysis for generalized fractional differential systems and applications. Chaos, Solitons and Fractals, 2020, 139, 110009.

Solvability for <i>p<|i>â€taplacian generalized fractional coupled systems with twoâ€sided memory effects. Mathematical Methods in the Applied Sciences, 2020, 43, 8797-8822.

Unique Solution for Multi-point Fractional Integro-Differential Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 219-226.

Unique positive solution for a \<;\>p\&|t;/i\>-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral. AIMS Mathematics, 2020, 5, 4754-4769.

Existence and uniqueness of periodic solutions for a system of differential equations via operator methods. Advances in Difference Equations, 2020, 2020,

Two nontrivial solutions for a nonhomogeneous fractional SchrÃๆdingerâ€"Poisson equation in
\$mathbb\{R\}^\{3\}\$. Boundary Value Problems, 2020, 2020, .
0.3

Properties of positive solutions for m-point fractional differential equations on an infinite interval.

19 Positive solutions for a new class of Hadamard fractional differential equations on infinite

A coupled system of fractional differential equations on the half-line. Boundary Value Problems, 2019, 2019, .

Unique solutions for new fractional differential equations with p-Laplacian and infinite-point

21 boundary conditions. International Journal of Dynamical Systems and Differential Equations, 2019, 9,
$0.2 \quad 1$ 1.

22 Unique Solutions for Fractional q-Difference Boundary Value Problems Via a Fixed Point Method.
$0.4 \quad 7$ Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42, 1507-1521.
Unique solutions for new fractional differential equations with p-Laplacian and infinite-point
23 boundary conditions. International Journal of Dynamical Systems and Differential Equations, 2019, 9,0.25 1.

24 Unique solution for a new system of fractional differential equations. Advances in Difference Equations, 2019, 2019,
25 id="mml1" display="inline" overflow="scroll" 25 altimg="si1.gif" \langle mml:miq</mml:mi></mml:math >-difference equation with three-point boundary 0.2 conditions. Indagationes Mathematicae. 2018. 29.948-961
A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions. Journal of Inequalities and Applications, 2018, 2018, 207.

$0.5 \quad 36$
Single upper-solution or lower-solution method
Advances in Difference Equations, 2018, 2018, 3.5 17
Nonnegative Solutions of Initial Value Problems for Langevin
Orders. Mediterranean Journal of Mathematics, 2018, 15, 1.
29 Unique solutions for a new coupled system of fractional differential equations. Advances in
Difference Equations, 2018, 2018, .
3.5 195
Some Uniqueness Results for Langevin Equations Involving Two Fractional Orders. Annals of Pure
30 and Applied Mathematics, 2018, 17, 43-56.
0.1 1
The unique positive solution for fractional integro-differential equations on infinite intervals. 0.2 5
31 ScienceAsia, 2018, 44, 118.0.538
Ï†â’ (h,e)-concave operators and applications. Journal of Mathematical Analysis and Applications, 2017,454, 571-584.0.45
Approximating Monotone Positive Solutions of a Nonlinear Fourth-Order Boundary Value Problem via 33 Sum Operator Method. Mediterranean Journal of Mathematics, 2017, 14, 1.A Fractional q\$q\$-difference Equation with Integral Boundary Conditions and Comparison Theorem.International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18, 575-583.

[^0]On some properties of positive solutions for a third-order three-point boundary value problem with a
37

Some New Existence and Uniqueness Results for an Integral Boundary Value Problem of Caputo
Fractional Differential Equations. Discrete Dynamics in Nature and Society, 2017, 2017, 1-11.
0.5

0

38 Local uniqueness of positive solutions for a coupled system of fractional differential equations with integral boundary conditions. Advances in Difference Equations, 2017, 2017, .
3.5

23
Some properties of sets, fixed point theorems in ordered product spaces and applications to a
39 nonlinear system of fractional differential equations. Topological Methods in Nonlinear Analysis,
$0.2 \quad 5$
2017, 49, 1.

Existence and uniqueness of positive solutions for a class of fractional differential equation with
integral boundary conditions. Nonlinear Analysis: Modelling and Control, 2017, 22, 160-172.
$1.1 \quad 9$

Some existence, uniqueness results on positive solutions for a fractional differential equation with
infinite-point boundary conditions. Nonlinear Analysis: Modelling and Control, 2017, 22, 566-577.
1.1

10

New existence and uniqueness results for an elastic beam equation with nonlinear boundary
conditions. Boundary Value Problems, 2015, 2015, .
0.3

12

Properties of positive solutions for the operator equation $A x=\hat{\mid>} \times \$ A x=l a m b d a \times \$$ and applications to
43 fractional differential equations with integral boundary conditions. Advances in Difference
$3.5 \quad 18$
Equations, 2015, 2015, .

Multi-point boundary value problems for a coupled system of nonlinear fractional differential
equations. Advances in Difference Equations, 2015, 2015, .
3.5

6

Existence and uniqueness of positive periodic solutions for a first-order functional differential
equation. Advances in Difference Equations, 2015, 2015, .

Existence and uniqueness of convex monotone positive solutions for boundary value problems of an
46 elastic beam equation with a parameter. Electronic Journal of Qualitative Theory of Differential
0.2

Equations, 2015, , 1-11.
47 Positive Solutions of a Nonlinear Parabolic Partial Differential Equation. Abstract and Applied
Analysis, 2014, 2014, 1-6.
$0.3 \quad 2$

Uniqueness of positive solutions for several classes of sum operator equations and applications.
Journal of Inequalities and Applications, 2014, 2014, .
$0.5 \quad 5$

Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional
49 differential equations with a parameter. Communications in Nonlinear Science and Numerical
1.7

82
Simulation, 2014, 19, 2820-2827.

Application of Schauder fixed point theorem to a coupled system of differential equations of
$0.4 \quad 5$
Application of Schauder fixed point theorem to a coupled system of differential equations of
fractional order. Journal of Nonlinear Science and Applications, 2014, 07, 131-137.

Fixed point theorems for a class of mixed monotone operators with convexity. Fixed Point Theory and
Applications, 2013, 2013,
1.1

Mixed monotone operator methods for the existence and uniqueness of positive solutions to
52 Riemann-Liouville fractional differential equation boundary value problems. Boundary Value

Fixed point theorems for mixed monotone operators with perturbation and applications to fractional
56 differential equation boundary value problems. Nonlinear Analysis: Theory, Methods \& Applications,
2012, 75, 2542-2551.
57 The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value
problem. Computers and Mathematics With Applications, 2011, 62, 2639-2647.

58 A sum operator equation and applications to nonlinear elastic beam equations and Laneâ€"Emdenâ€"Fowler equations. Journal of Mathematical Analysis and Applications, 2011, 375, 388-400.

59	New fixed point theorems for mixed monotone operators and local existenceâ $\epsilon^{\prime \prime}$ uniqueness of positive solutions for nonlinear boundary value problems. Journal of Mathematical Analysis and Applications, 2011, 382, 594-614.	0.5	48
60	An existence and uniqueness result for the singular Laneâ€"Emdenâe"Fowler equation. Nonlinear Analysis: Theory, Methods \& Applications, 2010, 72, 1275-1279.	0.6	8
61	Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems. Boundary Value Problems, 2010, 2010, 494210.	0.3	1
62	Existence and uniqueness of positive solutions for Neumann problems of second order impulsive differential equations. Electronic Journal of Qualitative Theory of Differential Equations, 2010, , 1-9.	0.2	2
63	Positive solutions for semi-positone three-point boundary value problems. Journal of Computational and Applied Mathematics, 2009, 228, 279-286.	1.1	9

Multiple positive solutions of three-point boundary value problem for differential equations with an
64 advanced argument. International Journal of Dynamical Systems and Differential Equations, 2009, 2,
0.2 313.
65 A surjection theorem and a fixed point theorem for a class of positive operators. Journal of
0.5

Mathematical Analysis and Applications, 2008, 337, 976-983.

A novel fixed point theorem and its applications. Acta Mathematica Scientia, 2007, 27, 413-420.
0.5
o

Positive solutions of the three-point boundary value problem for second order differential equations with an advanced argument. Nonlinear Analysis: Theory, Methods \& Applications, 2006, 65, 2013-2023.
0.6

40

[^0]: parameter. Advances in Difference Equations, 2017, 2017, .

