
Jagannath Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128739/publications.pdf Version: 2024-02-01

Ιλςλινιλτή Ρλι

#	Article	IF	CITATIONS
1	Effect of Blaine Fineness on the Quality of Hematite Iron Ore Pellets for Blast Furnace. Mineral Processing and Extractive Metallurgy Review, 2015, 36, 83-91.	5.0	43
2	Development on Iron Ore Pelletization Using Calcined Lime and MgO Combined Flux Replacing Limestone and Bentonite. ISIJ International, 2014, 54, 2169-2178.	1.4	36
3	Development of Pellet-Sinter Composite Agglomerate for Blast Furnace. ISIJ International, 2014, 54, 620-627.	1.4	25
4	Innovative Development on Agglomeration of Iron Ore Fines and Iron Oxide Wastes. Mineral Processing and Extractive Metallurgy Review, 2019, 40, 248-264.	5.0	23
5	Development of Fluxed Iron Oxide Pellets Strengthened by CO2 Treatment for Use in Basic Oxygen Steel Making. ISIJ International, 2009, 49, 210-219.	1.4	18
6	Role of MgO and Its Different Minerals on Properties of Iron Ore Pellet. Transactions of the Indian Institute of Metals, 2016, 69, 1141-1153.	1.5	16
7	Mill scale as a potential additive to improve the quality of hematite ore pellet. Mineral Processing and Extractive Metallurgy Review, 2018, 39, 202-210.	5.0	15
8	Development of fluxed micropellets for sintering utilising iron oxide waste fines. Ironmaking and Steelmaking, 2013, 40, 498-504.	2.1	11
9	Performance Assessment of CO2 Treated Fluxed Iron Oxide Pellets in Basic Oxygen Steel Making Process. ISIJ International, 2010, 50, 105-114.	1.4	11
10	Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 132-140.	4.9	10
11	Blast Furnace Flue Dust as a Potential Carbon Additive in Hematite Ore Pellet. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 633-647.	5.0	9
12	Performance Assessment of Partially Pre-fused Synthetic Flux in Basic Oxygen Steel Making. Journal of Iron and Steel Research International, 2015, 22, 916-923.	2.8	8
13	Development of Chromite Sinter from Ultra-Fine Chromite Ore by Direct Sintering. ISIJ International, 2014, 54, 559-566.	1.4	7
14	Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties. Journal of Central South University, 2015, 22, 3302-3310.	3.0	7
15	Reaction Mechanism of In-situ Carbon in Hematite Ore Pellet during Induration. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 40-54.	5.0	6
16	High Temperature Characterization of CO2 Treated Fluxed Pellets Developed for Basic Oxygen Steel Making. ISIJ International, 2009, 49, 1325-1332.	1.4	5
17	Dissolution Characteristics of CO ₂ -Treated Fluxed Pellets in Hot Metal Bath. Mineral Processing and Extractive Metallurgy Review, 2011, 32, 229-246.	5.0	4
18	Effect of high Blaine iron ore fines in hematite ore pelletization for blast furnace. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2020, 129, 299-307.	0.2	4

Jagannath Pal

#	Article	IF	CITATIONS
19	Development of blast furnace quality pellet optimising blue dust, hard ore and friable ore ratio. Ironmaking and Steelmaking, 2017, 44, 568-576.	2.1	3
20	Development of Prefused Synthetic Flux for Basic Oxygen Steel Making through Micro-Pelletization and Sintering of Iron Oxide Fines. Steel Research International, 2013, 84, 1115-1125.	1.8	2
21	Reduction Kinetics of Magnetite Concentrate Particles with H2 + CO at 1200 to 1600 °C Relevant to a Novel Ironmaking Process. , 2016, , 35-41.		Ο