Richard J Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native chemical ligation in protein synthesis and semi-synthesis. Chemical Society Reviews, 2018, 47, 9046-9068.	38.1	232
2	Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nature Reviews Chemistry, 2018, 2, .	30.2	229
3	Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chemical Communications, 2010, 46, 21-43.	4.1	204
4	Glycine betaine and glycine betaine analogues in common foods. Food Chemistry, 2003, 83, 197-204.	8.2	194
5	Rapid Additive-Free Selenocystine–Selenoester Peptide Ligation. Journal of the American Chemical Society, 2015, 137, 14011-14014.	13.7	181
6	Selfâ€Adjuvanting Multicomponent Cancer Vaccine Candidates Combining Perâ€Glycosylated MUC1 Glycopeptides and the Tollâ€like Receptor 2 Agonist Pam ₃ CysSer. Angewandte Chemie - International Edition, 2011, 50, 1635-1639.	13.8	145
7	Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins. Current Opinion in Chemical Biology, 2014, 22, 70-78.	6.1	127
8	Trifluoroethanethiol: An Additive for Efficient One-Pot Peptide Ligationâ^'Desulfurization Chemistry. Journal of the American Chemical Society, 2014, 136, 8161-8164.	13.7	124
9	Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science, 2016, 351, 186-190.	12.6	123
10	The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunology, 2017, 10, 1581-1593.	6.0	114
11	Chemoselective Peptide Ligation–Desulfurization at Aspartate. Angewandte Chemie - International Edition, 2013, 52, 9723-9727.	13.8	110
12	Total Synthesis of Homogeneous Antifreeze Glycopeptides and Glycoproteins. Angewandte Chemie - International Edition, 2012, 51, 3606-3610.	13.8	106
13	Photo-Tautomerization of Acetaldehyde to Vinyl Alcohol: A Potential Route to Tropospheric Acids. Science, 2012, 337, 1203-1206.	12.6	93
14	Solidâ€Phase Synthesis of Peptide and Glycopeptide Thioesters through Sideâ€Chainâ€Anchoring Strategies. Chemistry - A European Journal, 2008, 14, 3620-3629.	3.3	91
15	Cysteineâ€Free Peptide and Glycopeptide Ligation by Direct Aminolysis. Angewandte Chemie - International Edition, 2008, 47, 4411-4415.	13.8	90
16	Tyrosine Sulfation of Chemokine Receptor CCR2 Enhances Interactions with Both Monomeric and Dimeric Forms of the Chemokine Monocyte Chemoattractant Protein-1 (MCP-1). Journal of Biological Chemistry, 2013, 288, 10024-10034.	3.4	90
17	Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nature Chemistry, 2017, 9, 909-917.	13.6	85
18	Extended Sugar-Assisted Glycopeptide Ligations:  Development, Scope, and Applications. Journal of the American Chemical Society, 2007, 129, 13527-13536.	13.7	84

#	Article	IF	CITATIONS
19	Peptide Ligation–Desulfurization Chemistry at Arginine. ChemBioChem, 2013, 14, 559-563.	2.6	84
20	Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine. Angewandte Chemie - International Edition, 2015, 54, 12716-12721.	13.8	84
21	Total Synthesis of Teixobactin. Organic Letters, 2016, 18, 2788-2791.	4.6	84
22	Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature, 2019, 566, 548-552.	27.8	84
23	Synthesis and Utility of β-Selenol-Phenylalanine for Native Chemical Ligation–Deselenization Chemistry. Organic Letters, 2012, 14, 3142-3145.	4.6	82
24	Secondâ€Generation Sugarâ€Assisted Ligation: A Method for the Synthesis of Cysteineâ€Containing Glycopeptides. Angewandte Chemie - International Edition, 2007, 46, 5975-5979.	13.8	75
25	One-Pot Peptide Ligation–Desulfurization at Glutamate. Organic Letters, 2014, 16, 290-293.	4.6	74
26	New tuberculosis drug leads from naturally occurring compounds. International Journal of Infectious Diseases, 2017, 56, 212-220.	3.3	72
27	Structural Basis of Receptor Sulfotyrosine Recognition by a CC Chemokine: The N-Terminal Region of CCR3 Bound to CCL11/Eotaxin-1. Structure, 2014, 22, 1571-1581.	3.3	70
28	A comprehensive portrait of the venom of the giant red bull ant, <i>Myrmecia gulosa</i> , reveals a hyperdiverse hymenopteran toxin gene family. Science Advances, 2018, 4, eaau4640.	10.3	69
29	The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. ELife, 2018, 7, .	6.0	69
30	Chemoselective sulfenylation and peptide ligation at tryptophan. Chemical Science, 2014, 5, 260-266.	7.4	66
31	Peptide ligation chemistry at selenol amino acids. Journal of Peptide Science, 2014, 20, 64-77.	1.4	65
32	The Synthesis of Naturally Occurring Vitamin K and Vitamin K Analogues. Current Organic Chemistry, 2003, 7, 1625-1634.	1.6	64
33	Accelerated Protein Synthesis via One-Pot Ligation-Deselenization Chemistry. CheM, 2017, 2, 703-715.	11.7	64
34	Synthesis and Immunological Evaluation of Selfâ€Assembling and Selfâ€Adjuvanting Tricomponent Glycopeptide Cancerâ€Vaccine Candidates. Chemistry - A European Journal, 2012, 18, 16540-16548.	3.3	63
35	Synthetic Amino Acids for Applications in Peptide Ligation–Desulfurization Chemistry. Australian Journal of Chemistry, 2015, 68, 521.	0.9	61
36	Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. Journal of the American Chemical Society, 2020, 142, 1090-1100.	13.7	61

#	Article	IF	CITATIONS
37	CLE peptide triâ€arabinosylation and peptide domain sequence composition are essential for SUNNâ€dependent autoregulation of nodulation in <i>Medicago truncatula</i> . New Phytologist, 2018, 218, 73-80.	7.3	60
38	Sugar-Assisted Glycopeptide Ligation with Complex Oligosaccharides: Scope and Limitations. Journal of the American Chemical Society, 2008, 130, 11945-11952.	13.7	59
39	Homogeneous Sulfopeptides and Sulfoproteins: Synthetic Approaches and Applications To Characterize the Effects of Tyrosine Sulfation on Biochemical Function. Accounts of Chemical Research, 2015, 48, 2251-2261.	15.6	59
40	Diselenide–selenoester ligation for chemical protein synthesis. Nature Protocols, 2019, 14, 2229-2257.	12.0	58
41	Tyrosine Sulfation Influences the Chemokine Binding Selectivity of Peptides Derived from Chemokine Receptor CCR3. Biochemistry, 2011, 50, 1524-1534.	2.5	57
42	A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology, 2013, 10, 43.	2.0	57
43	Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Molecular and Cellular Proteomics, 2018, 17, 160-174.	3.8	57
44	Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Molecular and Cellular Proteomics, 2017, 16, 2055-2068.	3.8	56
45	Total Synthesis and Antimalarial Activity of Symplostatin 4. Organic Letters, 2010, 12, 5576-5579.	4.6	55
46	Construction of Challenging Proline–Proline Junctions via Diselenide–Selenoester Ligation Chemistry. Journal of the American Chemical Society, 2018, 140, 13327-13334.	13.7	55
47	Sulfopeptide Probes of the CXCR4/CXCL12 Interface Reveal Oligomer-Specific Contacts and Chemokine Allostery. ACS Chemical Biology, 2013, 8, 1955-1963.	3.4	51
48	Inhibition Studies of <i>Mycobacterium tuberculosis</i> Salicylate Synthase (Mbtl). ChemMedChem, 2010, 5, 1067-1079.	3.2	50
49	Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7641-7646.	2.2	50
50	Synthetic self-adjuvanting glycopeptide cancer vaccines. Frontiers in Chemistry, 2015, 3, 60.	3.6	50
51	Peptide nucleic acid-templated selenocystine–selenoester ligation enables rapid miRNA detection. Chemical Science, 2018, 9, 896-903.	7.4	50
52	Synthesis of Gallinamide A Analogues as Potent Falcipain Inhibitors and Antimalarials. Journal of Medicinal Chemistry, 2014, 57, 10557-10563.	6.4	47
53	Native Chemical Ligation–Photodesulfurization in Flow. Journal of the American Chemical Society, 2018, 140, 9020-9024	13.7	47
54	Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. ACS Central Science, 2021, 7, 1001-1008.	11.3	47

#	Article	IF	CITATIONS
55	Ticks from diverse genera encode chemokine-inhibitory evasin proteins. Journal of Biological Chemistry, 2017, 292, 15670-15680.	3.4	46
56	Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Journal of Medicinal Chemistry, 2022, 65, 2956-2970.	6.4	46
57	Synthesis of MUC1–lipopeptide chimeras. Chemical Communications, 2010, 46, 6249.	4.1	45
58	Synthesis and immunological evaluation of self-adjuvanting MUC1-macrophage activating lipopeptide 2 conjugate vaccine candidates. Chemical Communications, 2014, 50, 10273-10276.	4.1	44
59	PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells. Journal of Cell Science, 2016, 129, 1340-54.	2.0	44
60	Design and Receptor Interactions of Obligate Dimeric Mutant of Chemokine Monocyte Chemoattractant Protein-1 (MCP-1). Journal of Biological Chemistry, 2012, 287, 14692-14702.	3.4	43
61	Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nature Communications, 2017, 8, 14414.	12.8	43
62	Investigation into the P3Binding Domain of m-Calpain Using Photoswitchable Diazo- and Triazene-dipeptide Aldehydes:Â New Anticataract Agents. Journal of Medicinal Chemistry, 2007, 50, 2916-2920.	6.4	42
63	Total Synthesis, Stereochemical Assignment, and Antimalarial Activity of Gallinamideâ€A. Chemistry - A European Journal, 2011, 17, 13544-13552.	3.3	42
64	Siteâ€specific characterisation of densely <i>O</i> â€glycosylated mucinâ€type peptides using electron transfer dissociation ESlâ€MS/MS. Electrophoresis, 2011, 32, 3536-3545.	2.4	41
65	Synthesis of the Bacteriocin Glycopeptide Sublancin 168 and <i>S</i> Glycosylated Variants. Organic Letters, 2012, 14, 1910-1913.	4.6	41
66	Assessment of Myeloperoxidase Activity by the Conversion of Hydroethidine to 2-Chloroethidium. Journal of Biological Chemistry, 2014, 289, 5580-5595.	3.4	41
67	Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of <i>Mycobacterium tuberculosis</i> . Biochemical Journal, 2011, 436, 729-739.	3.7	39
68	The TB Structural Genomics Consortium: A decade of progress. Tuberculosis, 2011, 91, 155-172.	1.9	39
69	Total Synthesis of Homogeneous Variants of Hirudin P6: A Postâ€Translationally Modified Antiâ€Thrombotic Leechâ€Derived Protein. Angewandte Chemie - International Edition, 2014, 53, 3947-3951.	13.8	38
70	Synthesis of β-Thiol Phenylalanine for Applications in One-Pot Ligation–Desulfurization Chemistry. Organic Letters, 2015, 17, 2070-2073.	4.6	37
71	Oneâ€Pot Ligation–Oxidative Deselenization at Selenocysteine and Selenocystine. Chemistry - A European Journal, 2017, 23, 946-952.	3.3	37
72	Mosquito-Derived Anophelin Sulfoproteins Are Potent Antithrombotics. ACS Central Science, 2018, 4, 468-476.	11.3	37

#	Article	IF	CITATIONS
73	Electrochemistry for the Chemoselective Modification of Peptides and Proteins. Journal of the American Chemical Society, 2022, 144, 23-41.	13.7	37
74	Mechanistic and inhibition studies of chorismate-utilizing enzymes. Biochemical Society Transactions, 2005, 33, 763-766.	3.4	36
75	Inhibitors of an essential mycobacterial cell wall lipase (Rv3802c) as tuberculosis drug leads. Chemical Communications, 2011, 47, 5166.	4.1	36
76	Arabinosylation Modulates the Growth-Regulating Activity of the Peptide Hormone CLE40a from Soybean. Cell Chemical Biology, 2017, 24, 1347-1355.e7.	5.2	35
77	Polymer–peptide chimeras for the multivalent display of immunogenic peptides. Chemical Communications, 2010, 46, 2188.	4.1	34
78	Fluorosurfactants for microdroplets: Interfacial tension analysis. Journal of Colloid and Interface Science, 2010, 350, 205-211.	9.4	33
79	Thiazolidine-Protected β-Thiol Asparagine: Applications in One-Pot Ligation–Desulfurization Chemistry. Organic Letters, 2015, 17, 4902-4905.	4.6	33
80	Rapid assembly and profiling of an anticoagulant sulfoprotein library. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13873-13878.	7.1	33
81	Inhibition studies on salicylate synthase. Organic and Biomolecular Chemistry, 2005, 3, 1825.	2.8	32
82	Synthesis of N-linked glycopeptides via solid-phase aspartylation. Organic and Biomolecular Chemistry, 2010, 8, 3723.	2.8	32
83	Isolation of Shikimic Acid from Star Aniseed. Journal of Chemical Education, 2005, 82, 599.	2.3	31
84	Implications of Binding Mode and Active Site Flexibility for Inhibitor Potency against the Salicylate Synthase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2012, 51, 4868-4879.	2.5	31
85	Total Synthesis of Microcin B17 <i>via</i> a Fragment Condensation Approach. Organic Letters, 2011, 13, 680-683.	4.6	30
86	Fragments of the Bacterial Toxin Microcin B17 as Gyrase Poisons. PLoS ONE, 2013, 8, e61459.	2.5	30
87	Solid-phase synthesis of peptide selenoesters via a side-chain anchoring strategy. Chemical Communications, 2017, 53, 5424-5427.	4.1	30
88	Sulfation of the Human Cytomegalovirus Protein UL22A Enhances Binding to the Chemokine RANTES. Angewandte Chemie - International Edition, 2017, 56, 8490-8494.	13.8	30
89	Phosphate-assisted peptide ligation. Chemical Communications, 2009, , 4260.	4.1	29
90	Synthesis of novel fluorous surfactants for microdroplet stabilisation in fluorous oil streams. Journal of Fluorine Chemistry, 2010, 131, 398-407.	1.7	29

#	Article	IF	CITATIONS
91	Synthesis of a Self-Adjuvanting MUC1 VaccineviaDiselenide-Selenoester Ligation-Deselenization. ACS Chemical Biology, 2018, 13, 3279-3285.	3.4	29
92	Mucosal Vaccination with a Self-Adjuvanted Lipopeptide Is Immunogenic and Protective against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2019, 62, 8080-8089.	6.4	29
93	Triarabinosylation is required for nodulationâ€suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. Plant, Cell and Environment, 2019, 42, 188-197.	5.7	29
94	Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chemical Science, 2022, 13, 3826-3836.	7.4	29
95	Rational Design, Synthesis, and Evaluation of Nanomolar Type II Dehydroquinase Inhibitors. ChemMedChem, 2007, 2, 1015-1029.	3.2	28
96	Identification of a Catalytic Exosite for Complement Component C4 on the Serine Protease Domain of C1s. Journal of Immunology, 2012, 189, 2365-2373.	0.8	28
97	Synthesis and Utility of β-Selenophenylalanine and β-Selenoleucine in Diselenide–Selenoester Ligation. Journal of Organic Chemistry, 2020, 85, 1567-1578.	3.2	27
98	Cyclic peptides can engage a single binding pocket through highly divergent modes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26728-26738.	7.1	27
99	Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Organic and Biomolecular Chemistry, 2013, 11, 8113.	2.8	26
100	Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules. Bioorganic and Medicinal Chemistry, 2013, 21, 3569-3581.	3.0	26
101	Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1282-1291.	2.6	26
102	Falcipain Inhibitors Based on the Natural Product Gallinamide A Are Potent in Vitro and in Vivo Antimalarials. Journal of Medicinal Chemistry, 2019, 62, 5562-5578.	6.4	26
103	Synthesis and structureâ^'activity relationships of teixobactin. Annals of the New York Academy of Sciences, 2020, 1459, 86-105.	3.8	26
104	Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12657-12664.	7.1	26
105	Nanomolar Inhibition of Type II Dehydroquinase Based on the Enolate Reaction Mechanism. ChemMedChem, 2007, 2, 101-112.	3.2	25
106	CHD4 slides nucleosomes by decoupling entry- and exit-side DNA translocation. Nature Communications, 2020, 11, 1519.	12.8	25
107	Synthetic protein conjugate vaccines provide protection against <i>Mycobacterium tuberculosis</i> in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
108	Divergent and Siteâ€Selective Solidâ€Phase Synthesis of Sulfopeptides. Chemistry - an Asian Journal, 2011, 6, 1316-1320	3.3	24

#	Article	IF	CITATIONS
109	Effect of O-glycosylation and tyrosinesulfation of leech-derived peptides on binding and inhibitory activity against thrombin. Chemical Communications, 2012, 48, 1547-1549.	4.1	24
110	Structural requirements of flavonoids to induce heme oxygenase-1 expression. Free Radical Biology and Medicine, 2017, 113, 165-175.	2.9	24
111	Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins. Current Opinion in Chemical Biology, 2020, 58, 72-85.	6.1	24
112	Synthesis and evaluation of 2,5-dihydrochorismate analogues as inhibitors of the chorismate-utilising enzymes. Organic and Biomolecular Chemistry, 2009, 7, 2421.	2.8	23
113	Self-assembling macromolecular chimeras: controlling fibrillization of a β-sheet forming peptide by polymer conjugation. Soft Matter, 2011, 7, 3754.	2.7	23
114	Synthesis of rhamnosylated arginine glycopeptides and determination of the glycosidic linkage in bacterial elongation factor P. Chemical Science, 2017, 8, 2296-2302.	7.4	23
115	Efficient use of the Dmab protecting group: applications for the solid-phase synthesis of N-linked glycopeptides. Organic and Biomolecular Chemistry, 2009, 7, 2255.	2.8	22
116	Site-Selective Solid-Phase Synthesis of a CCR5 Sulfopeptide Library To Interrogate HIV Binding and Entry. ACS Chemical Biology, 2014, 9, 2074-2081.	3.4	22
117	Design, Synthesis, and Structural Studies on Potent Biaryl Inhibitors of Type II Dehydroquinases. ChemMedChem, 2007, 2, 1010-1013.	3.2	21
118	Total Synthesis of Native 5,7-Diacetylpseudaminic Acid from <i>N</i> -Acetylneuraminic Acid. Journal of Organic Chemistry, 2016, 81, 2607-2611.	3.2	21
119	CCR7 Sulfotyrosine Enhances CCL21 Binding. International Journal of Molecular Sciences, 2017, 18, 1857.	4.1	21
120	Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. Journal of Biological Chemistry, 2019, 294, 3464-3475.	3.4	21
121	Chemical Synthesis of Phosphorylated Insulin-like Growth Factor Binding Protein 2. Journal of the American Chemical Society, 2021, 143, 5336-5342.	13.7	21
122	Design and synthesis of aromatic inhibitors of anthranilate synthase. Organic and Biomolecular Chemistry, 2005, 3, 2271.	2.8	20
123	Peptide Ligations Accelerated byN-Terminal Aspartate and Glutamate Residues. Organic Letters, 2011, 13, 4770-4773.	4.6	20
124	Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site. Organic and Biomolecular Chemistry, 2012, 10, 9223.	2.8	20
125	Dissecting the Binding Interactions of Teixobactin with the Bacterial Cellâ€Wall Precursor Lipid II. ChemBioChem, 2020, 21, 789-792.	2.6	20
126	Expressed Protein Selenoester Ligation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20

#	Article	IF	CITATIONS
127	Cyclic Peptides Incorporating Phosphotyrosine Mimetics as Potent and Specific Inhibitors of the Grb7 Breast Cancer Target. Journal of Medicinal Chemistry, 2015, 58, 7707-7718.	6.4	19
128	Semisynthetic prion protein (PrP) variants carrying glycan mimics at position 181 and 197 do not form fibrils. Chemical Science, 2017, 8, 6626-6632.	7.4	19
129	Total Synthesis of Glycosylated Human Interferon-Î ³ . Organic Letters, 2020, 22, 6863-6867.	4.6	19
130	Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angewandte Chemie - International Edition, 2022, 61, e202111266.	13.8	19
131	Synthesis of homogeneous antifreeze glycopeptides via a ligation–desulfurisation strategy. Chemical Communications, 2009, , 6925.	4.1	18
132	Modern Extensions of Native Chemical Ligation for Chemical Protein Synthesis. Topics in Current Chemistry, 2014, 362, 27-87.	4.0	18
133	Total Synthesis of Ecumicin. Organic Letters, 2018, 20, 1019-1022.	4.6	18
134	Rapid assembly of potent type II dehydroquinase inhibitors <i>via</i> "Click―chemistry. MedChemComm, 2010, 1, 271-275.	3.4	17
135	Structure and inhibition of subunit I of the anthranilate synthase complex of <i>Mycobacterium tuberculosis</i> and expression of the active complex. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2297-2308.	2.5	17
136	Elucidation of <i>Mycobacterium tuberculosis</i> Typeâ€II Dehydroquinase Inhibitors using a Fragment Elaboration Strategy. ChemMedChem, 2012, 7, 1031-1043.	3.2	16
137	Discovery of Potent Cyclic Sulfopeptide Chemokine Inhibitors via Reprogrammed Genetic Code mRNA Display. Journal of the American Chemical Society, 2020, 142, 9141-9146.	13.7	16
138	Design and synthesis of aromatic inhibitors of anthranilate synthase. Organic and Biomolecular Chemistry, 2005, 3, 3629.	2.8	15
139	Synthesis of MUC1 Peptide and Glycopeptide Dendrimers. Australian Journal of Chemistry, 2009, 62, 1339.	0.9	15
140	Inhibition of chorismate-utilising enzymes by 2-amino-4-carboxypyridine and 4-carboxypyridone and 5-carboxypyridone analogues. Organic and Biomolecular Chemistry, 2010, 8, 3534.	2.8	15
141	Total Synthesis of Polydiscamides B, C, and D via a Convergent Native Chemical Ligation–Oxidation Strategy. Organic Letters, 2014, 16, 4500-4503.	4.6	15
142	Single addition of an allylamine monomer enables access to end-functionalized RAFT polymers for native chemical ligation. Chemical Communications, 2016, 52, 12952-12955.	4.1	15
143	Sulfotyrosine-Mediated Recognition of Human Thrombin by a Tsetse Fly Anticoagulant Mimics Physiological Substrates. Cell Chemical Biology, 2021, 28, 26-33.e8.	5.2	15
144	Synthesis of MUC1 glycopeptide thioesters and ligation via direct aminolysis. Biopolymers, 2011, 96, 137-146.	2.4	14

#	Article	IF	CITATIONS
145	Synthesis of full length and truncated microcin B17 analogues as DNA gyrase poisons. Organic and Biomolecular Chemistry, 2014, 12, 1570-1578.	2.8	14
146	The Structural Basis for Complement Inhibition by Gigastasin, a Protease Inhibitor from the Giant Amazon Leech. Journal of Immunology, 2017, 199, 3883-3891.	0.8	14
147	Synthetic Studies Toward the Skyllamycins: Total Synthesis and Generation of Simplified Analogues. Journal of Organic Chemistry, 2018, 83, 7250-7270.	3.2	14
148	Potent Cyclic Peptide Inhibitors of FXIIa Discovered by mRNA Display with Genetic Code Reprogramming. Journal of Medicinal Chemistry, 2021, 64, 7853-7876.	6.4	14
149	Total Synthesis of Fellutamide B and Deoxy-Fellutamides B, C, and D. Marine Drugs, 2013, 11, 2382-2397.	4.6	13
150	Phosphate modulates receptor sulfotyrosine recognition by the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Organic and Biomolecular Chemistry, 2015, 13, 2162-2169.	2.8	13
151	Synthesis and evaluation of analogues of the glycinocin family of calcium-dependent antibiotics. Organic and Biomolecular Chemistry, 2018, 16, 5310-5320.	2.8	13
152	A Solution to Chemical Pseudaminylation via a Bimodal Glycosyl Donor for Highly Stereocontrolled α- and β-Glycosylation. Organic Letters, 2019, 21, 3584-3588.	4.6	13
153	Synthesis and Evaluation of Potent Ene–yne Inhibitors of Typeâ€II Dehydroquinases as Tuberculosis Drug Leads. ChemMedChem, 2011, 6, 262-265.	3.2	12
154	Stereoselective Synthesis of Sialylated Tumor-Associated Glycosylamino Acids. Organic Letters, 2013, 15, 5794-5797.	4.6	12
155	Total Synthesis of Skyllamycinsâ€A–C. Chemistry - A European Journal, 2017, 23, 15046-15049.	3.3	11
156	Rapid one-pot iterative diselenide–selenoester ligation using a novel coumarin-based photolabile protecting group. Chemical Science, 2021, 12, 10014-10021.	7.4	11
157	Glycosylation Regulates N-Terminal Proteolysis and Activity of the Chemokine CCL14. ACS Chemical Biology, 2021, 16, 973-981.	3.4	11
158	Synthesis and protein conjugation studies of vitamin K analogues. Bioorganic and Medicinal Chemistry, 2004, 12, 5785-5791.	3.0	10
159	Total Synthesis of Glycinocins A–C. Journal of Organic Chemistry, 2017, 82, 12778-12785.	3.2	10
160	Total Synthesis and Antitrypanosomal Activity of Janadolide and Simplified Analogues. Organic Letters, 2020, 22, 3089-3093.	4.6	10
161	Late-stage modification of peptides and proteins at cysteine with diaryliodonium salts. Chemical Science, 2021, 12, 14159-14166.	7.4	10
162	Synthesis of polymers and nanoparticles bearing polystyrene sulfonate brushes for chemokine binding. Organic and Biomolecular Chemistry, 2016, 14, 5652-5658.	2.8	9

#	Article	IF	CITATIONS
163	Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angewandte Chemie - International Edition, 2021, 60, 5348-5356.	13.8	9
164	Intramolecular Interactions Enhance the Potency of Gallinamide A Analogues against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2022, 65, 4255-4269.	6.4	9
165	Potent Bactericidal Antimycobacterials Targeting the Chaperone ClpC1 Based on the Depsipeptide Natural Products Ecumicin and Ohmyungsamycin A. Journal of Medicinal Chemistry, 2022, 65, 4893-4908.	6.4	9
166	Peptidic Aldehydes Based on α- and β-Amino Acids: Synthesis, Inhibition of m-Calpain, and Anti-Cataract Properties. Australian Journal of Chemistry, 2004, 57, 877.	0.9	8
167	Synthesis of homogeneous MUC1 oligomers via a bi-directional ligation strategy. Organic and Biomolecular Chemistry, 2013, 11, 6090.	2.8	8
168	Total Synthesis of Erythropoietin through the Development and Exploitation of Enabling Synthetic Technologies. Angewandte Chemie - International Edition, 2013, 52, 505-507.	13.8	8
169	Synthesis of a GlcNAcylated arginine building block for the solid phase synthesis of death domain glycopeptide fragments. Bioorganic and Medicinal Chemistry, 2017, 25, 2895-2900.	3.0	8
170	Nutritional and metabolic regulation of the metabolite dimethylguanidino valeric acid: an early marker of cardiometabolic disease. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E509-E518.	3.5	8
171	Total Synthesis and Antimycobacterial Activity of Ohmyungsamycinâ€A, Deoxyecumicin, and Ecumicin. Chemistry - A European Journal, 2020, 26, 15200-15205.	3.3	8
172	Synthetic Sansanmycin Analogues as Potent <i>Mycobacterium tuberculosis</i> Translocase I Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 17326-17345.	6.4	8
173	A Defined αâ€Helix in the Bifunctional <i>O</i> â€Glycosylated Natriuretic Peptide TcNPa from the Venom of <i>Tropidechis carinatus</i> . Angewandte Chemie - International Edition, 2015, 54, 4828-4831.	13.8	7
174	Bioactive Molecules Australasia. Tetrahedron, 2018, 74, 1165-1166.	1.9	7
175	BET-Family Bromodomains Can Recognize Diacetylated Sequences from Transcription Factors Using a Conserved Mechanism. Biochemistry, 2021, 60, 648-662.	2.5	7
176	A pain-causing and paralytic ant venom glycopeptide. IScience, 2021, 24, 103175.	4.1	7
177	NMR characterization of cooperativity: fast ligand binding coupled to slow protein dimerization. Chemical Science, 2014, 5, 2783-2788.	7.4	6
178	Synthesis and evaluation of phenoxymethylbenzamide analogues as anti-trypanosomal agents. MedChemComm, 2015, 6, 403-406.	3.4	6
179	Hydrogen-adduction to open-shell graphene fragments: spectroscopy, thermochemistry and astrochemistry. Chemical Science, 2017, 8, 1186-1194.	7.4	6
180	A simple linearization method unveils hidden enzymatic assay interferences. Biophysical Chemistry, 2019, 252, 106193.	2.8	6

#	Article	IF	CITATIONS
181	Chemical synthesis of a haemathrin sulfoprotein library reveals enhanced thrombin inhibition following tyrosine sulfation. RSC Chemical Biology, 2020, 1, 379-384.	4.1	6
182	Total Synthesis of the Spider-Venom Peptide Hi1a. Organic Letters, 2021, 23, 8375-8379.	4.6	6
183	Synthesis and protein binding studies of a peptide fragment of clathrin assembly protein AP180 bearing an O-linked β-N-acetylglucosaminyl-6-phosphate modification. Organic and Biomolecular Chemistry, 2012, 10, 2545.	2.8	5
184	Sulfation of the Human Cytomegalovirus Protein UL22A Enhances Binding to the Chemokine RANTES. Angewandte Chemie, 2017, 129, 8610-8614.	2.0	5
185	Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1) Journal of Biological Chemistry, 2014, 289, 13362.	3.4	4
186	Synthesis of Norfijimycin A with Activity against Mycobacterium tuberculosis. Australian Journal of Chemistry, 2017, 70, 229.	0.9	4
187	Lactoferrin-Derived Peptide Lactofungin Is Potently Synergistic with Amphotericin B. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	4
188	Total Synthesis of Cyclocitropside A and Its Conversion to Cyclocitropsides B and C via Asparagine Deamidation. Organic Letters, 2012, 14, 5110-5113.	4.6	3
189	Studies Toward the Total Synthesis and Stereochemical Assignment of Microspinosamide. Australian Journal of Chemistry, 2015, 68, 1885.	0.9	3
190	Synthesis and evaluation of peptidic thrombin inhibitors bearing acid-stable sulfotyrosine analogues. Chemical Communications, 2021, 57, 10923-10926.	4.1	3
191	Solid-phase synthesis of coralmycin A/ <i>epi</i> -coralmycin A and desmethoxycoralmycin A. Organic and Biomolecular Chemistry, 2021, 19, 6291-6300.	2.8	3
192	Generation of oligonucleotide conjugates <i>via</i> one-pot diselenide-selenoester ligation–deselenization/alkylation. Chemical Science, 2022, 13, 410-420.	7.4	3
193	Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
194	Expressed Protein Selenoester Ligation. Angewandte Chemie, 0, , .	2.0	3
195	Synthetic vaccines targeting Mincle through conjugation of trehalose dibehenate. Chemical Communications, 2022, 58, 6890-6893.	4.1	3
196	Order-disorder transitions of cytoplasmic N-termini in the mechanisms of P-type ATPases. Faraday Discussions, 2021, 232, 172-187.	3.2	2
197	Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angewandte Chemie, 0, , .	2.0	2
198	Tyrosine- <i>O</i> -sulfation is a widespread affinity enhancer among thrombin interactors. Biochemical Society Transactions, 2022, 50, 387-401.	3.4	2

#	Article	IF	CITATIONS
199	Preparation, validation and use of a vasoactive tryptophan-derived hydroperoxide and relevant control compounds. Nature Protocols, 2021, 16, 3382-3418.	12.0	1
200	The Inaugural Australian Workshop on Bioconjugate Chemistry, UNSW 2008. Australian Journal of Chemistry, 2009, 62, 1318.	0.9	1
201	Side-Chain Anchoring Strategies for the Synthesis of Peptide Thioesters and Selenoesters. Methods in Molecular Biology, 2022, , 125-140.	0.9	1
202	The Synthesis of Naturally Occurring Vitamin K and Vitamin K Analogues. ChemInform, 2004, 35, no.	0.0	0
203	SynthCon3. Australian Journal of Chemistry, 2015, 68, 1789.	0.9	0
204	Editorial overview: Synthetic biomolecules. Current Opinion in Chemical Biology, 2018, 46, A3-A4.	6.1	0
205	Emerging Peptide Science in Australia. Peptide Science, 2018, 110, e24080.	1.8	0
206	Rücktitelbild: Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods (Angew. Chem. 10/2021). Angewandte Chemie, 2021, 133, 5632-5632.	2.0	0
207	Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angewandte Chemie, 2021, 133, 5408-5416.	2.0	0
208	Immunological Assessment of Lung Responses to Inhalational Lipoprotein Vaccines Against Bacterial Pathogens. Methods in Molecular Biology, 2022, 2414, 301-323.	0.9	0
209	Diselenide-selenoester ligation in the chemical synthesis of proteins. Methods in Enzymology, 2022, 662, 363-399.	1.0	0
210	GRAPPA 2020 Research Award Recipients. Journal of Rheumatology, 2022, , jrheum.211335.	2.0	0