Vivek Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4128424/publications.pdf Version: 2024-02-01

VIVER CLIDTA

#	Article	IF	CITATIONS
1	Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation. Drug Delivery and Translational Research, 2022, 12, 2474-2487.	3.0	15
2	Particle shape engineering for improving safety and efficacy of doxorubicin — A case study of rod-shaped carriers in resistant small cell lung cancer. , 2022, 137, 212850.		6
3	Repurposing therapeutics for malignant pleural mesothelioma (MPM) – Updates on clinical translations and future outlook. Life Sciences, 2022, 304, 120716.	2.0	3
4	Small-Molecule Gankyrin Inhibition as a Therapeutic Strategy for Breast and Lung Cancer. Journal of Medicinal Chemistry, 2022, 65, 8975-8997.	2.9	6
5	Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)—development and in-vitro efficacy. Drug Delivery and Translational Research, 2021, 11, 927-943.	3.0	34
6	Therapeutic potential of inhalable medications to combat coronavirus disease-2019. Therapeutic Delivery, 2021, 12, 105-110.	1.2	6
7	Bypassing P-glycoprotein mediated efflux of afatinib by cyclodextrin complexation – Evaluation of intestinal absorption and anti-cancer activity. Journal of Molecular Liquids, 2021, 327, 114866.	2.3	12
8	Nano-synergistic combination of Erlotinib and Quinacrine for non-small cell lung cancer (NSCLC) therapeutics – Evaluation in biologically relevant in-vitro models. Materials Science and Engineering C, 2021, 121, 111891.	3.8	9
9	Repurposing Bedaquiline for Effective Non-Small Cell Lung Cancer (NSCLC) Therapy as Inhalable Cyclodextrin-Based Molecular Inclusion Complexes. International Journal of Molecular Sciences, 2021, 22, 4783.	1.8	20
10	Bioinspired particle engineering for non-invasive inhaled drug delivery to the lungs. Materials Science and Engineering C, 2021, 128, 112324.	3.8	7
11	Development and characterization of inhalable transferrin functionalized amodiaquine nanoparticles – Efficacy in Non-Small Cell Lung Cancer (NSCLC) treatment. International Journal of Pharmaceutics, 2021, 608, 121038.	2.6	8
12	Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 7575.	1.8	44
13	The preparation of lipid-based drug delivery system using melt extrusion. Drug Discovery Today, 2020, 25, 1930-1943.	3.2	15
14	Utilizing drug repurposing against COVID-19 – Efficacy, limitations, and challenges. Life Sciences, 2020, 259, 118275.	2.0	89
15	Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. International Journal of Biological Macromolecules, 2020, 164, 638-650.	3.6	60
16	Enhanced solubility, stability, permeation and anti-cancer efficacy of Celastrol-β-cyclodextrin inclusion complex. Journal of Molecular Liquids, 2020, 318, 113936.	2.3	38
17	Repurposing Quinacrine for Treatment of Malignant Mesothelioma: In-Vitro Therapeutic and Mechanistic Evaluation. International Journal of Molecular Sciences, 2020, 21, 6306.	1.8	12
18	Development of pharmaceutically scalable inhaled anti-cancer nanotherapy – Repurposing amodiaquine for non-small cell lung cancer (NSCLC). Materials Science and Engineering C, 2020, 115, 111139.	3.8	28

VIVEK GUPTA

#	Article	IF	CITATIONS
19	Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC). Pharmaceutical Research, 2020, 37, 123.	1.7	14
20	Sorafenib Loaded Inhalable Polymeric Nanocarriers against Non-Small Cell Lung Cancer. Pharmaceutical Research, 2020, 37, 67.	1.7	40
21	Systematic Development and Optimization of Inhalable Pirfenidone Liposomes for Non-Small Cell Lung Cancer Treatment. Pharmaceutics, 2020, 12, 206.	2.0	53
22	Optimizing the aryl-triazole of cjoc42 for enhanced gankyrin binding and anti-cancer activity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127372.	1.0	7
23	Cyclodextrin Complexation for Enhanced Stability and Non-invasive Pulmonary Delivery of Resveratrol—Applications in Non-small Cell Lung Cancer Treatment. AAPS PharmSciTech, 2020, 21, 183.	1.5	26
24	Analytical challenges and advancements in bioanalysis of therapeutic proteins. Bioanalysis, 2020, 12, 207-209.	0.6	1
25	Statistical optimization and validation of a novel ultra-performance liquid chromatography method for estimation of nintedanib in rat and human plasma. Bioanalysis, 2020, 12, 159-174.	0.6	8
26	Utilizing nanotechnology to recuperate sorafenib for lung cancer treatment: challenges and future perspective. Therapeutic Delivery, 2020, 11, 213-215.	1.2	5
27	Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. International Journal of Pharmaceutics, 2020, 577, 118995.	2.6	53
28	Metformin-loaded chitosomes for treatment of malignant pleural mesothelioma – A rare thoracic cancer. International Journal of Biological Macromolecules, 2020, 160, 128-141.	3.6	27
29	Current Status and Perspectives in Mucosal Drug Delivery of Nanotherapeutic Systems. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 83-106.	0.2	0
30	Metformin-Encapsulated Liposome Delivery System: An Effective Treatment Approach against Breast Cancer. Pharmaceutics, 2019, 11, 559.	2.0	53
31	Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC). , 2019, , .		0
32	Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discovery Today, 2019, 24, 2076-2085.	3.2	239
33	Tyrosine kinase inhibitor conjugated quantum dots for non-small cell lung cancer (NSCLC) treatment. European Journal of Pharmaceutical Sciences, 2019, 133, 145-159.	1.9	44
34	Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. Journal of Drug Delivery Science and Technology, 2019, 49, 352-364.	1.4	41
35	Emerging Therapeutic Targets and Therapies in Idiopathic Pulmonary Fibrosis. Molecular and Translational Medicine, 2019, , 197-237.	0.4	0
36	Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. International Journal of Biological Macromolecules, 2019, 122, 338-347.	3.6	95

VIVEK GUPTA

#	Article	IF	CITATIONS
37	Nintedanib-cyclodextrin complex to improve bio-activity and intestinal permeability. Carbohydrate Polymers, 2019, 204, 68-77.	5.1	47
38	Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotechnology, 2017, 12, 589-594.	15.6	154
39	Advances in treatment of pulmonary arterial hypertension: patent review. Expert Opinion on Therapeutic Patents, 2017, 27, 907-918.	2.4	13
40	Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective. AAPS Journal, 2017, 19, 1669-1681.	2.2	57
41	Bioadhesive Polymers for Targeted Drug Delivery. , 2017, , 322-362.		4
42	Exploitation of Novel Molecular Targets to Treat Idiopathic Pulmonary Fibrosis: A Drug Discovery Perspective. Current Medicinal Chemistry, 2017, 24, 2439-2458.	1.2	6
43	Multiple Pathway Modulating Therapy for Pulmonary Hypertension: A Survey of Practice Patterns and Perceptions. Chest, 2016, 150, 1186A.	0.4	0
44	Microfluidicsâ€based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioengineering and Translational Medicine, 2016, 1, 63-81.	3.9	167
45	Delivery of Exenatide and Insulin Using Mucoadhesive Intestinal Devices. Annals of Biomedical Engineering, 2016, 44, 1993-2007.	1.3	44
46	The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells. PLoS ONE, 2016, 11, e0152074.	1.1	90
47	Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting. Scientific Reports, 2015, 5, 13476.	1.6	38
48	Editorial (Thematic Issue: Novel Therapeutic Strategies for Cardiovascular Disease Treatment: From) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf :
49	Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery. Journal of Controlled Release, 2015, 211, 118-133.	4.8	36
50	Topical delivery of Cyclosporine A into the skin using SPACE-peptide. Journal of Controlled Release, 2015, 199, 190-197.	4.8	37
51	Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches. Biomaterials, 2015, 68, 1-8.	5.7	76
52	Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. Journal of Controlled Release, 2015, 199, 29-36.	4.8	130
53	Exosomes: Natural Carriers for siRNA Delivery. Current Pharmaceutical Design, 2015, 21, 4556-4565.	0.9	35
54	Topical delivery of siRNA into skin using SPACE-peptide carriers. Journal of Controlled Release, 2014, 179, 33-41.	4.8	91

VIVEK GUPTA

#	Article	IF	CITATIONS
55	Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. Journal of Controlled Release, 2014, 173, 67-74.	4.8	100
56	In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. European Journal of Pharmaceutical Sciences, 2013, 49, 805-818.	1.9	121
57	Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. Journal of Controlled Release, 2013, 167, 189-199.	4.8	105
58	Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. Journal of Controlled Release, 2013, 172, 753-762.	4.8	69
59	Delivering Nanoparticles to Lungs while Avoiding Liver and Spleen through Adsorption on Red Blood Cells. ACS Nano, 2013, 7, 11129-11137.	7.3	276
60	Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10753-10758.	3.3	554
61	A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. Journal of Controlled Release, 2013, 172, 541-549.	4.8	64
62	Inhaled PLGA Particles of Prostaglandin E ₁ Ameliorate Symptoms and Progression of Pulmonary Hypertension at a Reduced Dosing Frequency. Molecular Pharmaceutics, 2013, 10, 1655-1667.	2.3	25
63	Permeation of Insulin, Calcitonin and Exenatide across Caco-2 Monolayers: Measurement Using a Rapid, 3-Day System. PLoS ONE, 2013, 8, e57136.	1.1	42
64	Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L733-L747.	1.3	18
65	PEG–PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. Journal of Controlled Release, 2012, 162, 310-320.	4.8	124
66	PLGA Microparticles Encapsulating Prostaglandin E1-Hydroxypropyl-β-cyclodextrin (PGE1-HPβCD) Complex for the Treatment of Pulmonary Arterial Hypertension (PAH). Pharmaceutical Research, 2011, 28, 1733-1749.	1.7	48
67	Influence of PEI as a core modifying agent on PLGA microspheres of PGE1, a pulmonary selective vasodilator. International Journal of Pharmaceutics, 2011, 413, 51-62.	2.6	48
68	Inhalational Therapy for Pulmonary Arterial Hypertension: Current Status and Future Prospects. Critical Reviews in Therapeutic Drug Carrier Systems, 2010, 27, 313-370.	1.2	24
69	Particle Size Influences the Immune Response Produced by Hepatitis B Vaccine Formulated in Inhalable Particles. Pharmaceutical Research, 2010, 27, 905-919.	1.7	72
70	Feasibility study of aerosolized prostaglandin E1 microspheres as a noninvasive therapy for pulmonary arterial hypertension. Journal of Pharmaceutical Sciences, 2010, 99, 1774-1789.	1.6	29
71	Inhalable Lactose-Based Dry Powder Formulations of Low Molecular Weight Heparin. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, 97-104.	0.7	25

Principles and Practice of Pulmonary Drug Delivery. , 2010, , 371-419.

1

#	Article	IF	CITATIONS
73	Cationic liposomes as carriers for aerosolized formulations of an anionic drug: Safety and efficacy study. European Journal of Pharmaceutical Sciences, 2009, 38, 165-171.	1.9	37
74	Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. International Journal of Pharmaceutics, 2009, 379, 41-50.	2.6	74