Moon-Ho Ham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/412795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects. Npj 2D Materials and Applications, 2021, 5, .	7.9	13
2	Large-Area Bernal-Stacked Bilayer Graphene Film on a Uniformly Rough Cu Surface via Chemical Vapor Deposition. ACS Applied Electronic Materials, 2021, 3, 2497-2503.	4.3	4
3	Fabrication of Large-Area Molybdenum Disulfide Device Arrays Using Graphene/Ti Contacts. Molecules, 2021, 26, 4394.	3.8	1
4	High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition. Carbon, 2020, 159, 579-585.	10.3	40
5	Defect-Assisted Contact Property Enhancement in a Molybdenum Disulfide Monolayer. ACS Applied Materials & Interfaces, 2020, 12, 4129-4134.	8.0	15
6	Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis. Journal of Membrane Science, 2020, 598, 117684.	8.2	48
7	Lowâ€Damaged Layerâ€by‣ayer Etching of Largeâ€Area Molybdenum Disulfide Films via Mild Plasma Treatment. Advanced Materials Interfaces, 2020, 7, 2000762.	3.7	5
8	Chemically Prelithiated Graphene for Anodes of Li-Ion Batteries. Energy & Fuels, 2020, 34, 13048-13055.	5.1	14
9	Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption. Scientific Reports, 2020, 10, 7074.	3.3	36
10	Aspect Ratio Control of Copper Nanowire via Solution Process and Its Flexible Transparent Conductive Electrode Applications. Electronic Materials Letters, 2020, 16, 404-410.	2.2	14
11	Substitutional Fluorine Doping of Large-Area Molybdenum Disulfide Monolayer Films for Flexible Inverter Device Arrays. ACS Applied Materials & Interfaces, 2020, 12, 31804-31809.	8.0	25
12	Transition Metal Dichalcogenides: Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays (Adv. Funct.) Tj ETQq0 0 (0 rg ₿₮.∮ Ov	erlack 10 Tf 5
13	Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays. Advanced Functional Materials, 2020, 30, 1908147.	14.9	50
14	Threshold Voltage Modulation of a Graphene–ZnO Barristor Using a Polymer Doping Process. Advanced Electronic Materials, 2019, 5, 1800805.	5.1	17
15	Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. International Journal of Refractory Metals and Hard Materials, 2019, 80, 286-291.	3.8	96
16	Low-Power Complementary Logic Circuit Using Polymer-Electrolyte-Gated Graphene Switching Devices. ACS Applied Materials & Interfaces, 2019, 11, 47247-47252.	8.0	8
17	Honeycombâ€Like Nitrogenâ€Doped Carbon 3D Nanoweb@Li ₂ S Cathode Material for Use in Lithium Sulfur Batteries. ChemSusChem, 2019, 12, 824-829.	6.8	34
18	Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for Highâ€Mobility MoS ₂ Fieldâ€Effect Transistors. Advanced Materials, 2019, 31, e1804422.	21.0	165

Μοον-Ηο Ηαμ

#	Article	IF	CITATIONS
19	Au@TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors. Chemical Engineering Journal, 2019, 362, 136-143.	12.7	32
20	Effect of N-doped carbon layer on Co3O4 nanowire-graphene composites as anode materials for lithium ion batteries. Journal of Physics and Chemistry of Solids, 2019, 124, 266-273.	4.0	20
21	Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Research, 2019, 12, 19-23.	10.4	23
22	Electric Control over 2D Dirac Plasmon Resonances in Topological Insulator Bi2Se3 in Proximity Contact with Graphene. , 2019, , .		0
23	Flexible Nanogenerators: Flexible Transparent Nanogenerators Utilizing Shape-Modulated ZnO Nanorod Arrays on Graphene Electrodes (Adv. Mater. Technol. 4/2018). Advanced Materials Technologies, 2018, 3, 1870014.	5.8	Ο
24	Flexible Transparent Nanogenerators Utilizing Shapeâ€Modulated ZnO Nanorod Arrays on Graphene Electrodes. Advanced Materials Technologies, 2018, 3, 1700355.	5.8	10
25	Control over Electron–Phonon Interaction by Dirac Plasmon Engineering in the Bi ₂ Se ₃ Topological Insulator. Nano Letters, 2018, 18, 734-739.	9.1	39
26	Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors. Journal of Alloys and Compounds, 2018, 739, 41-46.	5.5	23
27	Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Research, 2018, 11, 3529-3536.	10.4	34
28	Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science, 2018, 547, 73-79.	8.2	128
29	Transfer of preheat-treated SnO2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor. Sensors and Actuators B: Chemical, 2018, 255, 70-77.	7.8	12
30	Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere, 2018, 207, 581-589.	8.2	109
31	In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion. Crystals, 2018, 8, 14.	2.2	28
32	Effect of ribbon width on electrical transport properties of graphene nanoribbons. Nano Convergence, 2018, 5, 7.	12.1	14
33	Tunable Ion Sieving of Graphene Membranes through the Control of Nitrogen-Bonding Configuration. Nano Letters, 2018, 18, 5506-5513.	9.1	52
34	Highly Sensitive, Gate-Tunable, Room-Temperature Mid-Infrared Photodetection Based on Graphene–Bi ₂ Se ₃ Heterostructure. ACS Photonics, 2017, 4, 482-488.	6.6	70
35	Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine. Carbon, 2017, 117, 293-300.	10.3	125
36	The effect of doping temperature on the nitrogen-bonding configuration of nitrogen-doped graphene by hydrothermal treatment. RSC Advances, 2017, 7, 20738-20741.	3.6	18

#	Article	IF	CITATIONS
37	Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment. Nanoscale, 2017, 9, 9333-9339.	5.6	66
38	Sizeâ€Controlled Hollow Spheres of C/αâ€Fe ₂ O ₃ Prepared through the Quasiemulsionâ€Templated Method and Their Electrochemical Properties for Lithiumâ€Ion Storage. ChemElectroChem, 2017, 4, 2045-2051.	3.4	23
39	Pulsed KrF laser-assisted direct deposition of graphitic capping layer for Cu interconnect. Carbon, 2017, 123, 307-310.	10.3	8
40	Low-temperature synthesis of graphene by chemical vapor deposition and its applications. FlatChem, 2017, 5, 40-49.	5.6	55
41	Cerium vanadate and reduced graphene oxide composites for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 724, 1075-1082.	5.5	27
42	Sub-10-nm Co 3 O 4 nanoparticles/graphene composites as high-performance anodes for lithium storage. Chemical Engineering Journal, 2017, 309, 15-21.	12.7	33
43	Chemically Functionalized, Wellâ€Dispersed Carbon Nanotubes in Lithiumâ€Doped Zinc Oxide for Lowâ€Cost, Highâ€Performance Thinâ€Film Transistors. Small, 2016, 12, 1859-1865.	10.0	4
44	Transistors: Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors (Small 14/2016). Small, 2016, 12, 1960-1960.	10.0	0
45	Resistive switching in an amorphous ZnO dielectric film prepared on a Ga-doped ZnO transparent electrode. RSC Advances, 2016, 6, 103864-103871.	3.6	7
46	Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Scientific Reports, 2015, 5, 17955.	3.3	108
47	Direct Transfer Printing with Metal Oxide Layers for Fabricating Flexible Nanowire Devices. Advanced Functional Materials, 2015, 25, 6921-6926.	14.9	10
48	Palladium Nanoribbon Array for Fast Hydrogen Gas Sensing with Ultrahigh Sensitivity. Advanced Materials, 2015, 27, 6945-6952.	21.0	50
49	Chemically Driven, Water-Soluble Composites of Carbon Nanotubes and Silver Nanoparticles as Stretchable Conductors. ACS Macro Letters, 2015, 4, 769-773.	4.8	14
50	Gate capacitance model for the design of graphene nanoribbon array field-effect transistors. RSC Advances, 2015, 5, 54861-54866.	3.6	4
51	Isoindigo-Based Donor–Acceptor Conjugated Polymers for Air-Stable Nonvolatile Memory Devices. ACS Macro Letters, 2015, 4, 322-326.	4.8	39
52	Contact resistance improvement by the modulation of peripheral length to area ratio of graphene contact pattern. Applied Physics Letters, 2015, 106, .	3.3	11
53	Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability. Journal of Power Sources, 2015, 300, 272-278.	7.8	90
54	Quantitatively estimating defects in graphene devices using discharge current analysis method. Scientific Reports, 2015, 4, 4886.	3.3	15

#	Article	IF	CITATIONS
55	Binder-Free Pastes Fabricated from Sol–Gel-Derived TiO ₂ by Ammonia Addition for Low-Temperature Photoelectrodes. Science of Advanced Materials, 2014, 6, 2496-2500.	0.7	0
56	Molecular interactions of polyimides with single-walled carbon nanotubes. Polymer Chemistry, 2013, 4, 290-295.	3.9	12
57	Bendable thin-film transistors based on sol–gel derived amorphous Ga-doped In2O3 semiconductors. Superlattices and Microstructures, 2013, 59, 21-28.	3.1	12
58	Effects of oxygen concentration on the properties of Al-doped ZnO transparent conductive films deposited by pulsed DC magnetron sputtering. Materials Science in Semiconductor Processing, 2013, 16, 997-1001.	4.0	25
59	All-solution-processed, transparent thin-film transistors based on metal oxides and single-walled carbon nanotubes. Journal of Materials Chemistry C, 2013, 1, 1840.	5.5	29
60	Subâ€10 nm Graphene Nanoribbon Array Fieldâ€Effect Transistors Fabricated by Block Copolymer Lithography. Advanced Materials, 2013, 25, 4723-4728.	21.0	150
61	Effects of multi-layer graphene capping on Cu interconnects. Nanotechnology, 2013, 24, 115707.	2.6	66
62	Fieldâ€Effect Transistors: Subâ€10 nm Graphene Nanoribbon Array Fieldâ€Effect Transistors Fabricated by Block Copolymer Lithography (Adv. Mater. 34/2013). Advanced Materials, 2013, 25, 4682-4682.	21.0	1
63	Predictive modeling and analysis of HfO ₂ thin film process based on Bayesian information criterion using PCAâ€based neural networks. Surface and Interface Analysis, 2013, 45, 1334-1339.	1.8	3
64	Mode tunable p-type Si nanowire transistor based zero drive load logic inverter. Chemical Communications, 2012, 48, 7307.	4.1	2
65	Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nature Chemistry, 2012, 4, 724-732.	13.6	463
66	Ga-doped ZnO films deposited with varying sputtering powers and substrate temperatures by pulsed DC magnetron sputtering and their property improvement potentials. Applied Surface Science, 2012, 258, 6537-6544.	6.1	26
67	Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells. Applied Surface Science, 2012, 259, 596-599.	6.1	16
68	M13 Phage-Functionalized Single-Walled Carbon Nanotubes As Nanoprobes for Second Near-Infrared Window Fluorescence Imaging of Targeted Tumors. Nano Letters, 2012, 12, 1176-1183.	9.1	256
69	Elevated Temperature Anodized Nb ₂ O ₅ : A Photoanode Material with Exceptionally Large Photoconversion Efficiencies. ACS Nano, 2012, 6, 4045-4053.	14.6	174
70	Self-Selective Characteristics of Nanoscale \$ hbox{VO}_{x}\$ Devices for High-Density ReRAM Applications. IEEE Electron Device Letters, 2012, 33, 718-720.	3.9	57
71	Dynamics of Simultaneous, Single Ion Transport through Two Single-Walled Carbon Nanotubes: Observation of a Three-State System. Journal of the American Chemical Society, 2011, 133, 203-205.	13.7	43
72	Dynamic and Reversible Self-Assembly of Photoelectrochemical Complexes Based on Lipid Bilayer Disks, Photosynthetic Reaction Centers, and Single-Walled Carbon Nanotubes. Langmuir, 2011, 27, 1599-1609.	3.5	13

#	Article	IF	CITATIONS
73	Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotechnology, 2011, 6, 377-384.	31.5	368
74	Bi- and trilayer graphene solutions. Nature Nanotechnology, 2011, 6, 439-445.	31.5	337
75	Biomimetic strategies for solar energy conversion: a technical perspective. Energy and Environmental Science, 2011, 4, 3834.	30.8	69
76	Controlled formation of oxide shells from GaN nanowires: Poly- to single-crystal. Electronic Materials Letters, 2011, 7, 243-247.	2.2	7
77	Evidence for High-Efficiency Exciton Dissociation at Polymer/Single-Walled Carbon Nanotube Interfaces in Planar Nano-heterojunction Photovoltaics. ACS Nano, 2010, 4, 6251-6259.	14.6	82
78	Electrical transport properties in electroless-etched Si nanowire field-effect transistors. Microelectronic Engineering, 2010, 87, 2407-2410.	2.4	16
79	Selective alignment of a ZnO nanowire in a magnetic field for the fabrication of an air-gap field-effect transistor. Microelectronic Engineering, 2010, 87, 10-14.	2.4	10
80	Epitaxial synthesis of GaN/Ga2O3 core/shell nanocable heterostructures by atmosphere control. Acta Materialia, 2010, 58, 4714-4722.	7.9	10
81	Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nature Chemistry, 2010, 2, 929-936.	13.6	126
82	Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Materials, 2010, 9, 833-839.	27.5	75
83	Synthesis of Atomically Thin WO ₃ Sheets from Hydrated Tungsten Trioxide. Chemistry of Materials, 2010, 22, 5660-5666.	6.7	215
84	Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms. Expert Systems With Applications, 2009, 36, 4061-4066.	7.6	36
85	Single-Crystalline Ferromagnetic Mn ₄ Si ₇ Nanowires. Journal of Physical Chemistry C, 2009, 113, 8143-8146.	3.1	35
86	Dielectrophoretic assembly of GaN nanowires for UV sensor applications. Solid State Communications, 2008, 148, 194-198.	1.9	50
87	Properties of high-k Ti1â^'xSixO2 gate dielectric layers prepared at room temperature. Applied Surface Science, 2008, 254, 3943-3948.	6.1	3
88	High-k TixSi1â^'xO2 thin films prepared by co-sputtering method. Microelectronic Engineering, 2008, 85, 100-103.	2.4	5
89	Gate-controlled transport in GaN nanowire devices with high- kÂSi3N4 gate dielectrics. Solid State Communications, 2008, 145, 327-331.	1.9	8
90	Transport Properties in (Ga,Mn)N Nanowire Field-Effect Transistors. Journal of Physical Chemistry C, 2007. 111. 11480-11483.	3.1	16

Μοον-Ηο Ηαμ

#	Article	IF	CITATIONS
91	Effects of the channel thickness on the structural and electrical characteristics of room-temperature fabricated ZnO thin-film transistors. Semiconductor Science and Technology, 2007, 22, 608-612.	2.0	78
92	Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation. Solid State Communications, 2007, 142, 437-440.	1.9	23
93	Dependence of electrical properties on interfacial layer of Ta2O5 films. Microelectronic Engineering, 2007, 84, 2865-2868.	2.4	7
94	ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-Emitting Diodes. Small, 2007, 3, 568-572.	10.0	153
95	Process Effect on the RMS Roughness of CuInSe2Thin Films Grown by MOMBE. Transactions on Electrical and Electronic Materials, 2007, 8, 58-66.	1.9	0
96	Chemical surface passivation of HfO2films in a ZnO nanowire transistor. Nanotechnology, 2006, 17, 2116-2121.	2.6	35
97	Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Applied Physics Letters, 2006, 88, 202105.	3.3	182
98	Doping concentration dependence of ferromagnetic ordering in (Ga,Mn)N nanowires. Applied Physics Letters, 2006, 89, 173117.	3.3	14
99	MFM and Raman studies in PEMBE-grown (Ga,Mn)N thin films showing room-temperature ferromagnetism. Applied Surface Science, 2006, 252, 6289-6293.	6.1	7
100	Annealing effects on the properties of HfO2 films grown by metalorganic molecular beam epitaxy. Microelectronic Engineering, 2006, 83, 2452-2457.	2.4	11
101	Role of manganese in ferromagnetic (Al,Mn)N films. Solid State Communications, 2006, 137, 11-15.	1.9	5
102	Electrical spin injection from room-temperature ferromagnetic (Ga, Mn)N in nitride-based spin-polarized light-emitting diodes. Journal of Physics Condensed Matter, 2006, 18, 7703-7708.	1.8	21
103	EO Characteristics of Fringe-field Switching LCD on a-C:H Thin Films Using the UV Alignment Method. Ferroelectrics, 2006, 344, 191-196.	0.6	2
104	Contact characteristics in GaN nanowire devices. Nanotechnology, 2006, 17, 2203-2206.	2.6	41
105	Ferromagnetic Properties in Diluted Magnetic Semiconductors (Al,Mn)N grown by PEMBE. Transactions on Electrical and Electronic Materials, 2006, 7, 12-15.	1.9	0
106	Growth and characterization of MOMBE grown HfO2. Applied Surface Science, 2005, 240, 105-111.	6.1	31
107	Micropatterning of block copolymer micelle thin films using solvent capillary contact printing. Nanotechnology, 2005, 16, 2897-2902.	2.6	19
108	Correlation of nanochemistry and electrical properties in HfO2 films grown by metalorganic molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 102903.	3.3	17

#	Article	IF	CITATIONS
109	A comparative study on magnetic and magnetotransport properties in (Ga, Mn)N epitaxial films grown on undoped and n-type GaN by PEMBE. Journal of Physics Condensed Matter, 2004, 16, 6139-6145.	1.8	2
110	Room-temperature ferromagnetism of (Ga,Mn)N films: effects of Ga flux and growth temperature. Journal of Crystal Growth, 2004, 260, 85-90.	1.5	0
111	Magnetic and magnetotransport properties in the n-type (Ga,Mn)N thin films. Journal of Electronic Materials, 2004, 33, 114-117.	2.2	0
112	Observation of room-temperature ferromagnetism in (Al,Mn)N thin films. Journal of Crystal Growth, 2004, 271, 420-424.	1.5	8
113	Room-temperature ferromagnetism of Mg and Mn co-doped GaN films grown by PEMBE. Applied Surface Science, 2004, 222, 322-326.	6.1	6
114	Hole-Mediated Ferromagnetic Properties in Zn1-xMnxO Thin Films. Japanese Journal of Applied Physics, 2004, 43, L280-L283.	1.5	72
115	Effects of Mn flux on ferromagnetic properties of (Ga,Mn)N films grown by PEMBE. Solid State Communications, 2003, 128, 119-123.	1.9	2
116	Magnetotransport in (Ga,Mn)N Ferromagnetic Semiconductors Grown by Plasma-Enhanced Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2003, 42, L1372-L1374.	1.5	9
117	Room Temperature Electron-Mediated Ferromagnetism in a Diluted Magnetic Semiconductor: (Ga,Mn)N. Japanese Journal of Applied Physics, 2002, 41, L1069-L1071.	1.5	17