
Choongyeop Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4126498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic/inorganic hybrid cerium oxide-based superhydrophobic surface with enhanced weather resistance and self-recovery. Progress in Organic Coatings, 2022, 170, 106998.	1.9	4
2	Influence of early drop bouncing on heat transfer during drop impact. International Communications in Heat and Mass Transfer, 2022, 137, 106235.	2.9	3
3	Reducing surface fouling against emulsified oils using CuO nanostructured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125991.	2.3	2
4	Passive Anti-Flooding Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 4068-4080.	4.0	37
5	Quantifying Frictional Drag Reduction Properties of Superhydrophobic Metal Oxide Nanostructures. Langmuir, 2020, 36, 11809-11816.	1.6	13
6	Endowing antifouling properties on metal substrata by creating an artificial barrier layer based on scalable metal oxide nanostructures. Biofouling, 2020, 36, 766-782.	0.8	4
7	Water penetration dynamics through a Janus mesh during drop impact. Soft Matter, 2020, 16, 6072-6081.	1.2	11
8	Brushed lubricant-impregnated surfaces (BLIS) for long-lasting high condensation heat transfer. Scientific Reports, 2020, 10, 2959.	1.6	27
9	Drag reduction on drop during impact on multiscale superhydrophobic surfaces. Journal of Fluid Mechanics, 2020, 892, .	1.4	9
10	Contact time on curved superhydrophobic surfaces. Physical Review E, 2020, 101, 043108.	0.8	32
11	High-efficiency power generation in hyper-saline environment using conventional nanoporous membrane. Electrochimica Acta, 2019, 319, 366-374.	2.6	10
12	Continuous scavenging of broadband vibrations via omnipotent tandem triboelectric nanogenerators with cascade impact structure. Scientific Reports, 2019, 9, 8223.	1.6	47
13	Performance Analysis of Gravity-Driven Oil–Water Separation Using Membranes with Special Wettability. Langmuir, 2019, 35, 7769-7782.	1.6	33
14	Influence of lubricant-mediated droplet coalescence on frosting delay on lubricant impregnated surfaces. International Journal of Heat and Mass Transfer, 2019, 128, 217-228.	2.5	19
15	Anisotropic drop spreading on superhydrophobic grates during drop impact. Soft Matter, 2018, 14, 3760-3767.	1.2	12
16	Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter, 2018, 14, 1571-1580.	1.2	40
17	Mesoporous Highly-Deformable Composite Polymer for a Gapless Triboelectric Nanogenerator via a One-Step Metal Oxidation Process. Micromachines, 2018, 9, 656.	1.4	25
18	Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy, 2018, 50, 9-15.	8.2	105

CHOONGYEOP LEE

#	Article	IF	CITATIONS
19	Nanoscale Dynamics versus Surface Interactions: What Dictates Osmotic Transport?. Journal of Physical Chemistry Letters, 2017, 8, 478-483.	2.1	30
20	Enhanced heat transfer using metal foam liquid supply layers for micro heat spreaders. International Journal of Heat and Mass Transfer, 2017, 108, 2338-2345.	2.5	37
21	Water Penetration through a Superhydrophobic Mesh During a Drop Impact. Physical Review Letters, 2017, 118, 014501.	2.9	79
22	Plasmonic–Photonic Interference Coupling in Submicrometer Amorphous TiO ₂ –Ag Nanoarchitectures. Langmuir, 2017, 33, 12398-12403.	1.6	12
23	Influence of molecular-surface interactions on osmotic flow in nanochannels. , 2017, , .		0
24	Scalable superhydrophobic flexible plasmonic poly(tetrafluoroethylene-co-perfluorovinyl ether) films via ion-beam irradiation and metal deposition. Materials Express, 2017, 7, 319-323.	0.2	1
25	Superhydrophobic drag reduction in laminar flows: a critical review. Experiments in Fluids, 2016, 57, 1.	1.1	229
26	The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Scientific Reports, 2016, 6, 24276.	1.6	155
27	Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Soft Matter, 2015, 11, 4592-4599.	1.2	88
28	Near-wall nanovelocimetry based on total internal reflection fluorescence with continuousÂtracking. Journal of Fluid Mechanics, 2015, 766, 147-171.	1.4	20
29	Droplet coalescence on water repellant surfaces. Soft Matter, 2015, 11, 154-160.	1.2	57
30	Dynamical role of slip heterogeneities in confined flows. Physical Review E, 2014, 89, 052309.	0.8	29
31	Influence of Geometric Patterns of Microstructured Superhydrophobic Surfaces on Water-Harvesting Performance via Dewing. Langmuir, 2014, 30, 15468-15476.	1.6	72
32	Drop Impact Dynamics on Oil-Infused Nanostructured Surfaces. Langmuir, 2014, 30, 8400-8407.	1.6	81
33	Osmotic Flow through Fully Permeable Nanochannels. Physical Review Letters, 2014, 112, 244501.	2.9	85
34	Influence of geometric patterns of microstructured superhydrophobic surfaces on water harvesting performance via dewing. Journal of Physics: Conference Series, 2014, 557, 012068.	0.3	49
35	Wetting and Active Dewetting Processes of Hierarchically Constructed Superhydrophobic Surfaces Fully Immersed in Water. Journal of Microelectromechanical Systems, 2012, 21, 712-720.	1.7	24
36	Large Apparent Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction. Nano Letters, 2012, 12, 4037-4044.	4.5	143

CHOONGYEOP LEE

#	Article	IF	CITATIONS
37	Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction. Physical Review Letters, 2011, 106, 014502.	2.9	349
38	Influence of Surface Hierarchy of Superhydrophobic Surfaces on Liquid Slip. Langmuir, 2011, 27, 4243-4248.	1.6	51
39	Restoring underwater superhydrophobicity with self-regulated gas generation. , 2011, , .		0
40	Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models. Biomechanics and Modeling in Mechanobiology, 2011, 10, 901-914.	1.4	28
41	Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls. Langmuir, 2009, 25, 12812-12818.	1.6	251
42	Fabrication of Superhydrophobic Microstructures With Nanostructured Sidewalls Designed to Maximize Giant Liquid Slip. , 2009, , .		0
43	Structured Surfaces for a Giant Liquid Slip. Physical Review Letters, 2008, 101, 064501.	2.9	366
44	Effect of Geometric Parameters of Superhydrophobic Surface on Liquid Slip. , 2008, , .		1