List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4126443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biology, 1999, 1, 280-287.	10.3	503
2	CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature, 1999, 402, 429-433.	27.8	314
3	Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: Prevention of reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11791-11796.	7.1	310
4	NEW EMBO MEMBER'S REVIEW: Functional aspects of protein mono-ADP-ribosylation. EMBO Journal, 2003, 22, 1953-1958.	7.8	267
5	Human TROP-2 is a tumor-associated calcium signal transducer. International Journal of Cancer, 1998, 76, 671-676.	5.1	180
6	The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO Journal, 2008, 27, 970-981.	7.8	177
7	Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8034-8038.	7.1	175
8	CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biology, 2005, 7, 570-580.	10.3	162
9	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
10	CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO Journal, 2003, 22, 3122-3130.	7.8	144
11	Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. European Journal of Pharmacology, 2005, 524, 159-168.	3.5	139
12	Mitotic Golgi Partitioning Is Driven by the Membrane-Fissioning Protein CtBP3/BARS. Science, 2004, 305, 93-96.	12.6	120
13	The multiple activities of CtBP/BARS proteins: the Golgi view. Trends in Cell Biology, 2006, 16, 167-173.	7.9	111
14	The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO Journal, 2007, 26, 2465-2476.	7.8	111
15	COPI acts in both vesicular and tubular transport. Nature Cell Biology, 2011, 13, 996-1003.	10.3	108
16	Phosphatidic acid in membrane rearrangements. FEBS Letters, 2019, 593, 2428-2451.	2.8	108
17	Combining affinity purification by ADP-ribose-binding <i>macro</i> domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4243-4248.	7.1	97
18	Mitosis controls the Golgi and the Golgi controls mitosis. Current Opinion in Cell Biology, 2007, 19, 386-393.	5.4	95

#	Article	IF	CITATIONS
19	Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS Journal, 2005, 272, 4565-4575.	4.7	94
20	A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO Journal, 2005, 24, 4133-4143.	7.8	93
21	Molecular Cloning and Functional Characterization of Brefeldin A-ADP-ribosylated Substrate. Journal of Biological Chemistry, 1999, 274, 17705-17710.	3.4	92
22	Phosphoinositides and the golgi complex. Current Opinion in Cell Biology, 2002, 14, 434-447.	5.4	88
23	Group IV Phospholipase A2α Controls the Formation of Inter-Cisternal Continuities Involved in Intra-Golgi Transport. PLoS Biology, 2009, 7, e1000194.	5.6	81
24	Biological activities and metabolism of the lysophosphoinositides and glycerophosphoinositols. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 52-69.	2.4	80
25	A 14-3-3Î ³ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIÎ ² to regulate post-Golgi carrier formation. Nature Cell Biology, 2012, 14, 343-354.	10.3	79
26	The emerging physiological roles of the glycerophosphodiesterase family. FEBS Journal, 2014, 281, 998-1016.	4.7	79
27	Stimulation of endogenous ADP-ribosylation by brefeldin A Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1114-1118.	7.1	77
28	PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Scientific Reports, 2017, 7, 14035.	3.3	76
29	Specific Recognition of ZNF217 and Other Zinc Finger Proteins at a Surface Groove of C-Terminal Binding Proteins. Molecular and Cellular Biology, 2006, 26, 8159-8172.	2.3	74
30	GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1745-1750.	7.1	72
31	Elevated levels and mitogenic activity of lysophosphatidylinositol in kâ€rasâ€transformed epithelial cells. FEBS Journal, 1994, 221, 383-389.	0.2	71
32	A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia. Scientific Reports, 2016, 6, 24821.	3.3	71
33	Synaptojanin 2 Functions at an Early Step of Clathrin-Mediated Endocytosis. Current Biology, 2003, 13, 659-663.	3.9	67
34	Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nature Communications, 2016, 7, 12148.	12.8	63
35	Mechanisms Directing the Nuclear Localization of the CtBP Family Proteins. Molecular and Cellular Biology, 2006, 26, 4882-4894.	2.3	62
36	Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene, 1998, 16, 2357-2365.	5.9	54

#	Article	IF	CITATIONS
37	Endogenous ADP-ribosylation of the G Protein \hat{I}^2 Subunit Prevents the Inhibition of Type 1 Adenylyl Cyclase. Journal of Biological Chemistry, 2000, 275, 9418-9424.	3.4	53
38	Monoclonal Antibody Studies Defining the Origin and Properties of Autoantibodies in Graves' Disease. Annals of the New York Academy of Sciences, 1986, 475, 157-173.	3.8	52
39	Reproducible Surface-Enhanced Raman Quantification of Biomarkers in Multicomponent Mixtures. ACS Nano, 2014, 8, 2575-2583.	14.6	52
40	Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure. Journal of Cell Biology, 1997, 139, 1109-1118.	5.2	50
41	Golgi complex fragmentation in G2/M transition: An organelleâ€based cellâ€cycle checkpoint. IUBMB Life, 2012, 64, 661-670.	3.4	50
42	JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. Journal of Cell Science, 2015, 128, 2249-2260.	2.0	50
43	Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Frontiers in Cell and Developmental Biology, 2019, 7, 291.	3.7	50
44	Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7065-7069.	7.1	49
45	Molecular aspects of membrane fission in the secretory pathway. Cellular and Molecular Life Sciences, 2002, 59, 1819-1832.	5.4	49
46	A Novel Glycerophosphodiester Phosphodiesterase, GDE5, Controls Skeletal Muscle Development via a Non-enzymatic Mechanism. Journal of Biological Chemistry, 2010, 285, 27652-27663.	3.4	49
47	Evidence that a guanine nucleotide-binding protein linked to a muscarinic receptor inhibits directly phospholipase C Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4889-4893.	7.1	47
48	Transformation by the K-RAS oncogene correlates with increases in phospholipase A2 activity, glycerophosphoinositol production and phosphoinositide synthesis in thyroid cells. Cellular Signalling, 1991, 3, 321-332.	3.6	46
49	Golgi maturationâ€dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO Journal, 2021, 40, e107238.	7.8	45
50	The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Science, 2006, 15, 1042-1050.	7.6	44
51	Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. European Journal of Cell Biology, 2004, 83, 263-279.	3.6	43
52	Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Research, 2015, 43, 7702-7716.	14.5	42
53	Golgi Partitioning Controls Mitotic Entry through Aurora-A Kinase. Molecular Biology of the Cell, 2010, 21, 3708-3721.	2.1	41
54	Protein kinase C is required for the disappearance of MPF upon artificial activation in mouse eggs. Molecular Reproduction and Development, 1997, 48, 292-299.	2.0	40

#	Article	IF	CITATIONS
55	Increase in lipid microviscosity of unilamellar vesicles upon the creation of transmembrane potential. Journal of Membrane Biology, 1982, 65, 235-242.	2.1	39
56	Overexpression of Phosphatidylinositol Transfer Protein α in NIH3T3 Cells Activates a Phospholipase A. Journal of Biological Chemistry, 1999, 274, 35393-35399.	3.4	39
57	The Developmentally Regulated Osteoblast Phosphodiesterase GDE3 Is Glycerophosphoinositol-specific and Modulates Cell Growth. Journal of Biological Chemistry, 2009, 284, 24848-24856.	3.4	38
58	Components of the CtBP1/BARS-dependent fission machinery. Histochemistry and Cell Biology, 2013, 140, 407-421.	1.7	38
59	Characterization of Chemical Inhibitors of Brefeldin A-activated Mono-ADP-ribosylation. Journal of Biological Chemistry, 1997, 272, 14200-14207.	3.4	37
60	Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9794-9799.	7.1	37
61	New Members of the Mammalian Glycerophosphodiester Phosphodiesterase Family. Journal of Biological Chemistry, 2015, 290, 4260-4271.	3.4	37
62	An Integrated Approach for the Monitoring of Brain and Autonomic Response of Children with Autism Spectrum Disorders during Treatment by Wearable Technologies. Frontiers in Neuroscience, 2016, 10, 276.	2.8	37
63	Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nature Communications, 2016, 7, 11727.	12.8	37
64	Mono-ADP-Ribosylation: A Tool for Modulating Immune Response and Cell Signaling. Science Signaling, 2002, 2002, pe53-pe53.	3.6	35
65	Shp1 in Solid Cancers and Their Therapy. Frontiers in Oncology, 2020, 10, 935.	2.8	35
66	60kDa Lysophospholipase, a New Sgk1 Molecular Partner Involved in the Regulation of ENaC. Cellular Physiology and Biochemistry, 2010, 26, 587-596.	1.6	34
67	A novel pathway of cell growth regulation mediated by a PLA 2 αâ€derived phosphoinositide metabolite. FASEB Journal, 2006, 20, 2567-2569.	0.5	32
68	The glycerophosphoinositols: cellular metabolism and biological functions. Cellular and Molecular Life Sciences, 2009, 66, 3449-3467.	5.4	32
69	Thyrotropin effect on the availability of Ni regulatory protein in FRTL-5 rat thyroid cells to ADP-ribosylation by pertussis toxin. FEBS Journal, 1987, 166, 475-481.	0.2	30
70	Endogenous mono-ADP-ribosylation of the free Gβγ prevents stimulation of phosphoinositide 3-kinase-γ and phospholipase C-β2 and is activated by G-protein-coupled receptors. Biochemical Journal, 2002, 367, 825-832.	3.7	29
71	Thyrotropin upregulates alpha 1-adrenergic receptors in rat FRTL-5 thyroid cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8677-8680.	7.1	28
72	Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy. PLoS ONE, 2019, 14, e0216811.	2.5	27

#	Article	IF	CITATIONS
73	Regulation of Intracellular Magnesium in Ascites Cells: Involvement of Different Regulatory Pathways. Archives of Biochemistry and Biophysics, 1996, 331, 194-200.	3.0	26
74	Phorbol Myristate Acetate Inhibits α1-Adrenergically but Not Thyrotropin-Regulated Functions in FRTL-5 Rat Thyroid Cells. Endocrinology, 1987, 120, 1152-1160.	2.8	24
75	Reorganization of Actin Cytoskeleton by the Phosphoinositide Metabolite Glycerophosphoinositol 4-Phosphate. Molecular Biology of the Cell, 2003, 14, 503-515.	2.1	24
76	ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes. Biochemical Society Transactions, 2019, 47, 357-370.	3.4	24
77	PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochemical Pharmacology, 2019, 167, 64-75.	4.4	23
78	Role of pertussis toxin sensitive g proteins in the alpha1 adrenergic receptor but not in the thyrotropin receptor mediated activation of membrane phospholipases and iodide fluxes in FRTL-5 thyroid cells. Biochemical and Biophysical Research Communications, 1986, 141, 1000-1006.	2.1	22
79	Membrane transport and in vitro metabolism of the Ras cascade messenger, glycerophosphoinositol 4-phosphate. FEBS Journal, 1999, 266, 413-419.	0.2	22
80	Analysis of glycerophosphoinositol by liquid chromatography–electrospray ionisation tandem mass spectrometry using a β-cyclodextrin-bonded column. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 802, 283-289.	2.3	22
81	Changes in the Levels of Glycerophosphoinositols During Differentiation of Hepatic and Neuronal Cells. FEBS Journal, 1996, 241, 386-392.	0.2	21
82	Cyclooxygenase-Dependent Thyroid Cell Proliferation Induced by Immunoglobulins from Patients with Graves' Disease ¹ . Journal of Clinical Endocrinology and Metabolism, 1997, 82, 670-673.	3.6	21
83	Maintenance of PtdIns45P2 pools under limiting inositol conditions, as assessed by liquid chromatography–tandem mass spectrometry and PtdIns45P2 mass evaluation in Ras-transformed cells. European Journal of Cancer, 2002, 38, 2463-2475.	2.8	21
84	Glycerophosphoinositols inhibit the ability of tumour cells to invade the extracellular matrix. European Journal of Cancer, 2005, 41, 470-476.	2.8	21
85	Gα13 mediates activation of the cytosolic phospholipase A2α through fine regulation of ERK phosphorylation. Cellular Signalling, 2006, 18, 2200-2208.	3.6	21
86	CtBP1/BARS Gly172 → Glu mutant structure: Impairing NAD(H)-binding and dimerization. Biochemical and Biophysical Research Communications, 2009, 381, 70-74.	2.1	21
87	Phospholipase A2IVα Regulates Phagocytosis Independent of Its Enzymatic Activity. Journal of Biological Chemistry, 2012, 287, 16849-16859.	3.4	21
88	PAK1 and CtBP1 Regulate the Coupling of Neuronal Activity to Muscle Chromatin and Gene Expression. Molecular and Cellular Biology, 2015, 35, 4110-4120.	2.3	21
89	The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATÎ). Frontiers in Cell and Developmental Biology, 2019, 7, 147.	3.7	21
90	Muscarinic regulation of phospholipase A2 and iodide fluxes in FRTL-5 thyroid cells. European Journal of Endocrinology, 1991, 125, 192-200.	3.7	20

#	Article	IF	CITATIONS
91	CD28 co-stimulates TCR/CD3-induced phosphoinositide turnover in human T lymphocytes. European Journal of Immunology, 2001, 31, 2438-2447.	2.9	20
92	Purification and Functional Properties of the Membrane Fissioning Protein CtBP3/BARS. Methods in Enzymology, 2005, 404, 296-316.	1.0	20
93	Adenylate cyclase activity of ν-ras -k transformed rat epithelial thyroid cells. FEBS Letters, 1988, 228, 37-41.	2.8	19
94	Graves' Immunoglobulins Activate Phospholipase A ₂ by Recognizing Specific Epitopes on Thyrotropin Receptor ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3283-3292.	3.6	19
95	The glycerophosphoinositols and their cellular functions. Biochemical Society Transactions, 2012, 40, 101-107.	3.4	19
96	The Glycerophosphoinositols: From Lipid Metabolites to Modulators of T-Cell Signaling. Frontiers in Immunology, 2013, 4, 213.	4.8	18
97	Molecular characterization of a glycerophosphoinositol transporter in mammalian cells. FEBS Letters, 2006, 580, 6789-6796.	2.8	17
98	ADPredict: ADP-ribosylation site prediction based on physicochemical and structural descriptors. Bioinformatics, 2018, 34, 2566-2574.	4.1	17
99	The Thyrotropin Receptor. , 1985, , 457-512.		17
100	Immunoglobulins from Graves' patients stimulate phospholipase-A2 in FRTL5 thyroid cells. Journal of Clinical Endocrinology and Metabolism, 1992, 74, 585-592.	3.6	17
101	PKD-dependent PARP12-catalyzed mono-ADP-ribosylation of Golgin-97 is required for E-cadherin transport from Golgi to plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
102	From toxins to mammalian enzymes the diversity of mono-ADP-ribosylation. Frontiers in Bioscience - Landmark, 2015, 20, 389-404.	3.0	15
103	Cyclooxygenase-Dependent Thyroid Cell Proliferation Induced by Immunoglobulins from Patients with Graves' Disease. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 670-673.	3.6	15
104	ADP-ribosylation factor regulates spectrin skeleton assembly on the Golgi complex by stimulating phosphatidylinositol 4,5-bisphosphate synthesis. Biochemical Society Transactions, 1999, 27, 638-642.	3.4	14
105	Analysis of Phosphoinositides and Their Aqueous Metabolites. Methods in Enzymology, 2007, 434, 187-232.	1.0	14
106	SRC-dependent signalling regulates actin ruffle formation induced by glycerophosphoinositol 4-phosphate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2311-2322.	4.1	14
107	The natural phosphoinositide derivative glycerophosphoinositol inhibits the lipopolysaccharide-induced inflammatory and thrombotic responses. Journal of Biological Chemistry, 2017, 292, 12828-12841.	3.4	14
108	Norepinephrine, unlike ATP, induces all-or-none increase in cytosolic calcium in thyroid cells. The role of inositol-trisphosphate-sensitive stores and calcium channels. FEBS Journal, 1994, 219, 837-844.	0.2	13

#	Article	IF	CITATIONS
109	Differentiation of HL-60 promyelocytic leukemia cells is accompanied by a modification of magnesium homeostasis. , 1998, 71, 441-448.		13
110	Cytosolic Phospholipase A2α Regulates Cell Growth in <i>RET/PTC</i> -Transformed Thyroid Cells. Cancer Research, 2007, 67, 11769-11778.	0.9	13
111	Glycerophosphoinositol-4-phosphate enhances SDF-1α-stimulated T-cell chemotaxis through PTK-dependent activation of Vav. Cellular Signalling, 2007, 19, 2351-2360.	3.6	12
112	Lipid signalling in health and disease. FEBS Journal, 2013, 280, 6280-6280.	4.7	12
113	G Protein-Linked Receptors in the Thyroid. Advances in Experimental Medicine and Biology, 1989, 261, 245-269.	1.6	12
114	Graves' Immunoglobulins Activate Phospholipase A2 by Recognizing Specific Epitopes on Thyrotropin Receptor. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3283-3292.	3.6	12
115	Signaling pathways involved in thyroid hyperfunction and growth in Graves' disease. Biochimie, 1999, 81, 415-424.	2.6	11
116	The role of Aurora-A kinase in the Golgi-dependent control of mitotic entry. Bioarchitecture, 2011, 1, 61-65.	1.5	11
117	Mono-ADP-ribosylation of the G Protein βγ Dimer Is Modulated by Hormones and Inhibited by Arf6. Journal of Biological Chemistry, 2011, 286, 5995-6005.	3.4	11
118	Physiological concentrations of thyrotropin increase cytosolic calcium levels in primary cultures of human thyroid cells. Journal of Clinical Endocrinology and Metabolism, 1995, 80, 1136-1143.	3.6	11
119	Subgroups of Graves' patients identified on the basis of the biochemical activities of their immunoglobulins. Journal of Clinical Endocrinology and Metabolism, 1995, 80, 2785-2790.	3.6	11
120	Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS). Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1068-1070.	2.5	10
121	A signalling cascade involving receptor-activated phospholipase A2, glycerophosphoinositol 4-phosphate, Shp1 and Src in the activation of cell motility. Cell Communication and Signaling, 2019, 17, 20.	6.5	9
122	PDMP blocks the BFA-induced ADP-ribosylation of BARS-50 in isolated Golgi membranes. FEBS Letters, 1999, 459, 310-312.	2.8	8
123	Brefeldin A-Induced ADP-Ribosylation in the Structure and Function of the Golgi Complex. Advances in Experimental Medicine and Biology, 1997, 419, 331-335.	1.6	8
124	Characterisation of a novel glycosylphosphatidylinositol-anchored mono-ADP-ribosyltransferase isoform in ovary cells. European Journal of Cell Biology, 2011, 90, 665-677.	3.6	7
125	The phosphatase Shp1 interacts with and dephosphorylates cortactin to inhibit invadopodia function. Cell Communication and Signaling, 2021, 19, 64.	6.5	7
126	In Vitro Techniques for ADP-Ribosylated Substrate Identification. Methods in Molecular Biology, 2018, 1813, 25-40.	0.9	6

#	Article	IF	CITATIONS
127	Characterization of the Endogenous Mono-ADP-Ribosylation Stimulated by Brefeldin A. Advances in Experimental Medicine and Biology, 1997, 419, 337-342.	1.6	6
128	An Improved UPLC-MS/MS Platform for Quantitative Analysis of Glycerophosphoinositol in Mammalian Cells. PLoS ONE, 2015, 10, e0123198.	2.5	6
129	Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. Molecular and Cellular Biochemistry, 1999, 193, 43-51.	3.1	5
130	Women in science and medicine. Lancet, The, 2011, 377, 811.	13.7	4
131	Direct LC-MS/MS Analysis of Extra- and Intracellular Glycerophosphoinositol in Model Cancer Cell Lines. Frontiers in Immunology, 2021, 12, 646681.	4.8	4
132	Modulatory Role of GTP-Binding Proteins in the Endogenous ADP-Ribosylation of Cytosolic Proteins. Advances in Experimental Medicine and Biology, 1997, 419, 343-347.	1.6	4
133	The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity. PLoS ONE, 2015, 10, e0127614.	2.5	4
134	Changes in the synthesis of histone Hl° and Hl in rat FRTL-5 thyroid cells exposed to thyrotropin. Life Sciences, 1989, 45, 2209-2216.	4.3	3
135	Synaptojanin 2 Functions at an Early Step of Clathrin-Mediated Endocytosis. Current Biology, 2003, 13, 1746.	3.9	3
136	Possible Role of BARS-50, A Substrate of Brefeldin A-Dependent Mono-ADP-Ribosylation, in Intracellular Transport. Advances in Experimental Medicine and Biology, 1997, 419, 321-330.	1.6	3
137	Cell signaling and cancer treatment. Annals of Oncology, 1997, 8, 429-433.	1.2	2
138	The Golgi complex: 120Âyears and it doesn't show. FEBS Letters, 2019, 593, 2277-2279.	2.8	2
139	Secretagogues elevate cytosolic calcium by stimulating cyclic AMP formation in a corticotropin secreting cell line. Regulatory Peptides, 1985, 10, 49-52.	1.9	2
140	Mono-ADP-Ribosylation of Heterotrimeric G Proteins. , 2003, , 613-618.		2
141	Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Frontiers in Oncology, 2022, 12, 835290.	2.8	2
142	BARS Influences Neuronal Development by Regulation of Post-Golgi Trafficking. Cells, 2022, 11, 1320.	4.1	2
143	Lipid fluidity of the outer segment membranes from cephalopod retina. Experimental Eye Research, 1985, 40, 575-583.	2.6	1
144	The Golgi complex. FEBS Letters, 2009, 583, 3731-3731.	2.8	1

#	Article	IF	CITATIONS
145	SERS sensing of cancer biomarkers. , 2014, , .		1
146	Glycerophosphoinositol-4-Phosphate in Intracellular Signalling. , 1996, , 229-237.		1
147	Mono-ADP-Ribosylation of Heterotrimeric G Proteins. , 2010, , 1665-1672.		1
148	The 2021 FASEB science research conference on NAD metabolism and signaling. Aging, 2021, 13, 24924-24930.	3.1	1
149	Membrane Phosphoinositides as Molecular Targets for the Control of Motility and Invasion of Tumor Cells. Tumori, 2001, 87, 19-20.	1.1	0
150	Biomolecular sensing for cancer diagnostics using highly reproducible SERS substrates. , 2014, , .		0
151	Biological Activities of the Phosphoinositide Derivatives, the Glycerophosphoinositols. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2003, , 39-49.	0.1	0
152	Increases in Phospholipase A2 Activity and in the ADP Ribosylation of G Proteins in K-ras-Transformed Thyroid Cells. , 1991, , 137-143.		0
153	Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. , 1999, , 43-51.		0
154	Automatic Quantification of the Extracellular Matrix Degradation Produced by Tumor Cells. Smart Innovation, Systems and Technologies, 2016, , 137-145.	0.6	0
155	CtBP 3/BARS and Membrane Fission. , 2007, , 93-104.		0
156	Phospholipases in Signal Transduction. , 0, , 283-317.		0