
Emiliano Descrovi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4125763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pulse modulation by Bloch surface wave excitation. Optics Letters, 2022, 47, 2574.	3.3	0
2	Fluorophore Coupling to Internal Modes of Bragg Gratings. Journal of Physical Chemistry C, 2020, 124, 22743-22752.	3.1	6
3	Vortex Beam Generation by Spin-Orbit Interaction with Bloch Surface Waves. ACS Photonics, 2020, 7, 774-783.	6.6	14
4	Tunable photo-responsive elastic metamaterials. Nature Communications, 2020, 11, 2576.	12.8	55
5	Enhanced Directional Light Emission Assisted by Resonant Bloch Surface Waves in Circular Cavities. ACS Photonics, 2019, 6, 2073-2082.	6.6	30
6	Driving Cells with Lightâ \in Controlled Topographies. Advanced Science, 2019, 6, 1801826.	11.2	21
7	Coupling of Fluorophores in Single Nanoapertures with Tamm Plasmon Structures. Journal of Physical Chemistry C, 2019, 123, 1413-1420.	3.1	15
8	Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices. Sensors and Actuators B: Chemical, 2018, 255, 2143-2150.	7.8	25
9	Enhancement of Spontaneous Emission Decay Rate in Photonic Nano-Cavities Based on Bloch Surface Waves. , 2018, , .		0
10	Photo-responsive suspended micro-membranes. Journal of Materials Chemistry C, 2018, 6, 10428-10434.	5.5	12
11	Reconfigurable elastomeric graded-index optical elements controlled by light. Light: Science and Applications, 2018, 7, 7.	16.6	16
12	Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma. Biomedical Optics Express, 2018, 9, 529.	2.9	19
13	Optical Waveguideâ€Enhanced Diffraction for Observation of Responsive Hydrogel Nanostructures. Macromolecular Chemistry and Physics, 2017, 218, 1600400.	2.2	9
14	Light-driven liquid microlenses. , 2017, , .		1
15	Laser-induced anisotropic wettability on azopolymeric micro-structures. Applied Physics Letters, 2017, 110, .	3.3	39
16	Tunable hydrophobicity assisted by light-responsive surface micro-structures. , 2017, , .		1
17	Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection. Analytical Biochemistry, 2017, 531, 20-36.	2.4	9
18	3D printable light-responsive polymers. Materials Horizons, 2017, 4, 396-401.	12.2	88

#	Article	IF	CITATIONS
19	Reversible Shaping of Microwells by Polarized Light Irradiation. International Journal of Polymer Science, 2017, 2017, 1-5.	2.7	5
20	Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating. Optical Materials Express, 2016, 6, 444.	3.0	12
21	Bloch Surface Wave-Coupled Emission at Ultraviolet Wavelengths. Journal of Physical Chemistry C, 2016, 120, 28727-28734.	3.1	41
22	Optical and structural properties of amorphous silicon-nitrides and silicon-oxycarbides: Application of multilayer structures for the coupling of Bloch Surface Waves. Journal of Non-Crystalline Solids, 2016, 453, 113-117.	3.1	11
23	Light-Driven Reversible Shaping of Individual Azopolymeric Micro-Pillars. Scientific Reports, 2016, 6, 31702.	3.3	60
24	Smart detection of microRNAs through fluorescence enhancement on a photonic crystal. Talanta, 2016, 150, 699-704.	5.5	13
25	Hydrogel-Terminated Photonic Crystal for Label-Free Detection of Angiopoietin-1. Journal of Lightwave Technology, 2016, 34, 3641-3645.	4.6	16
26	Nanophotonic Structures for Biosensing. , 2016, , 2607-2613.		0
27	Light-Driven Reversible Shaping of 2D Polymeric Lattices. , 2016, , .		0
28	Focusing and Extraction of Light mediated by Bloch Surface Waves. Scientific Reports, 2015, 4, 5428.	3.3	52
29	Metal–elastomer nanostructures for tunable SERS and easy microfluidic integration. RSC Advances, 2015, 5, 4404-4410.	3.6	40
30	Metal–Dielectric Waveguides for High-Efficiency Coupled Emission. ACS Photonics, 2015, 2, 810-815.	6.6	33
31	Fluorescence Spectroscopy with Metal–Dielectric Waveguides. Journal of Physical Chemistry C, 2015, 119, 16245-16255.	3.1	18
32	Optofluidic chip for surface wave-based fluorescence sensing. Sensors and Actuators B: Chemical, 2015, 215, 225-230.	7.8	13
33	Enhanced fluorescence detection of miRNA-16 on a photonic crystal. Analyst, The, 2015, 140, 5459-5463.	3.5	31
34	New Sensing Strategies Based on Surface Modes in Photonic Crystals. , 2015, , 321-337.		1
35	Nanophotonic Structures for Biosensing. , 2015, , 1-8.		0
36	Exploiting the phase properties of Bloch surface waves on photonic crystals for efficient optical sensing. Proceedings of SPIE, 2014, , .	0.8	1

#	Article	IF	CITATIONS
37	In-plane 2D focusing of surface waves by ultrathin refractive structures. Optics Letters, 2014, 39, 6391.	3.3	25
38	One-dimensional photonic crystals with cylindrical geometry. Optics Express, 2014, 22, 27236.	3.4	12
39	Real-time protein aggregation monitoring with a Bloch surface wave-based approach. Proceedings of SPIE, 2014, , .	0.8	3
40	Bloch Surface Waves on Dielectric Photonic Crystals for Biological Sensing. Lecture Notes in Electrical Engineering, 2014, , 107-111.	0.4	0
41	Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic–photonic structure. Analytical Biochemistry, 2014, 445, 1-13.	2.4	58
42	Fluorescence imaging assisted by surface modes on dielectric multilayers. European Physical Journal D, 2014, 68, 1.	1.3	6
43	Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources. ACS Photonics, 2014, 1, 612-617.	6.6	14
44	Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes. Plasmonics, 2013, 8, 25-33.	3.4	30
45	Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. Journal of Physical Chemistry C, 2013, 117, 20139-20145.	3.1	63
46	Bloch surface wave-enhanced fluorescence biosensor. Biosensors and Bioelectronics, 2013, 43, 108-114.	10.1	77
47	Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals. Analytical Biochemistry, 2013, 442, 83-96.	2.4	71
48	Broadband wide-angle dispersion measurements: Instrumental setup, alignment, and pitfalls. Review of Scientific Instruments, 2013, 84, 033107.	1.3	5
49	A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Optics Express, 2013, 21, 23331.	3.4	79
50	Probing losses of dielectric multilayers by means of Bloch surface waves. Optics Letters, 2013, 38, 616.	3.3	37
51	Leakage radiation interference microscopy. Optics Letters, 2013, 38, 3374.	3.3	32
52	Fluorescence diffraction assisted by Bloch surface waves on a one-dimensional photonic crystal. New Journal of Physics, 2013, 15, 073002.	2.9	41
53	A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves. Sensors, 2013, 13, 2011-2022.	3.8	56
54	Realâ€ŧime Amyloid Aggregation Monitoring with a Photonic Crystalâ€based Approach. ChemPhysChem, 2013, 14, 3476-3482.	2.1	23

#	Article	IF	CITATIONS
55	Improving the sensitivity of optical biosensors by means of Bloch surface waves. Biomedizinische Technik, 2012, 57, .	0.8	17
56	Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors. Biomedical Optics Express, 2012, 3, 2405.	2.9	22
57	A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation. Optics Express, 2012, 20, 6703.	3.4	29
58	Surface label-free sensing by means of a fluorescent multilayered photonic structure. Applied Physics Letters, 2012, 101, 131105.	3.3	19
59	Controlled fluorescence emission via surface modes on dielectric and metallo-dielectric multistack. , 2012, , .		0
60	Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors and Actuators B: Chemical, 2012, 174, 292-298.	7.8	218
61	Bloch surface waves-controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides. Applied Physics Letters, 2012, 100, 063305.	3.3	41
62	SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide–antibody assays. Journal of Raman Spectroscopy, 2012, 43, 730-736.	2.5	70
63	Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves. Sensors and Actuators B: Chemical, 2012, 161, 1046-1052.	7.8	54
64	Realtime antibody-antibody detection by means of Bloch surface waves on silicon-based multilayers. , 2011, , .		0
65	Temperature stability of Bloch surface wave biosensors. Applied Physics Letters, 2011, 99, 231107.	3.3	14
66	Synthesis of amorphous silicon/magnesia based direct opals with tunable optical properties. Optical Materials, 2011, 33, 563-569.	3.6	8
67	Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications. Nanoscience and Technology, 2011, , 645-689.	1.5	2
68	Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal. Applied Physics Letters, 2011, 99, .	3.3	75
69	Guided Bloch Surface Waves on Ultrathin Polymeric Ridges. Nano Letters, 2010, 10, 2087-2091.	9.1	151
70	Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves. Applied Physics Letters, 2010, 96, .	3.3	44
71	Metalâ€dielectric nanostructures for amplified Raman and fluorescence spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1196-1199.	0.8	10
72	Ultrathin waveguides for Bloch surface waves: Near-field analysis of propagation and polarization. , 2010, , .		1

#	Article	IF	CITATIONS
73	Experimental determination of the sensitivity of Bloch Surface Waves based sensors. Optics Express, 2010, 18, 8087.	3.4	96
74	Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1617.	2.1	61
75	Fast optical vapour sensing by Bloch surface waves on porous siliconmembranes. Physical Chemistry Chemical Physics, 2010, 12, 502-506.	2.8	52
76	Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals. Applied Physics Letters, 2009, 94, .	3.3	54
77	SERSâ€∎ctive substrates based on silvered porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1736-1739.	0.8	21
78	Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules. Sensors and Actuators B: Chemical, 2009, 137, 467-470.	7.8	39
79	Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 155 î¼m. Optics Letters, 2009, 34, 839.	3.3	117
80	Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film. Optics Letters, 2009, 34, 1405.	3.3	39
81	Resonant diffraction of symmetric and antisymmetric Bloch surface waves on a corrugated periodic multilayer slab. Optics Letters, 2009, 34, 1973.	3.3	5
82	Visualization of surface electromagnetic waves in one-dimensional photonic crystal by fluorescence dye. Proceedings of SPIE, 2009, , .	0.8	1
83	High Resolution Capabilities of All-Silica Cantilevered Probes for Near-Field Optical Microscopy. Journal of Nanoscience and Nanotechnology, 2009, 9, 6460-6464.	0.9	4
84	A version of Stöber synthesis enabling the facile prediction of silica nanospheres size for the fabrication of opal photonic crystals. Journal of Nanoparticle Research, 2008, 10, 1225-1229.	1.9	41
85	Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates. Journal of Colloid and Interface Science, 2008, 321, 235-241.	9.4	126
86	Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Applied Surface Science, 2008, 254, 7494-7497.	6.1	78
87	Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal. Optics Letters, 2008, 33, 243.	3.3	44
88	Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals. Optics Express, 2008, 16, 5453.	3.4	68
89	Near-field analysis of surface electromagnetic waves in the bandgap region of a polymeric grating written on a one-dimensional photonic crystal. Applied Physics Letters, 2008, 93, .	3.3	24
90	Optical response with threefold symmetry axis on oriented microdomains of opal photonic crystals. Physical Review B, 2008, 78, .	3.2	28

#	Article	IF	CITATIONS
91	Field localization and enhanced Second-Harmonic Generation in silicon-based microcavities. Optics Express, 2007, 15, 4159.	3.4	12
92	Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Applied Physics Letters, 2007, 91, .	3.3	66
93	Selective coupling of and modes into microfabricated fully metal-coated quartz probes. Ultramicroscopy, 2007, 107, 158-165.	1.9	16
94	On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes. Proceedings of SPIE, 2005, , .	0.8	2
95	Optical properties of microfabricated fully-metal-coated near-field probes in collection mode. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1432.	1.5	37
96	A virtual optical probe based on localized Surface Plasmon Polaritons. Optics Express, 2005, 13, 7017.	3.4	20
97	Analysis of Polarization-Dependent Near-Field Optical Effects in Microfabricated Apertureless SNOM Probes. , 2005, , .		0
98	Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different matal coating characteristics. Applied Physics Letters, 2004, 85, 5340-5342	3.3	20

Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics. Applied Physics Letters, 2004, 85, 5340-5342. 3.398