Jose Gadea-Vacas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4125545/publications.pdf

Version: 2024-02-01

46 papers

1,723 citations

304368 22 h-index 39 g-index

48 all docs 48 docs citations

48 times ranked

2387 citing authors

#	Article	IF	CITATIONS
1	INTRODUCTION TO ADVANCED SEQUENCING TECHNOLOGIES FOR UNDERGRADUATE STUDENTS IN GENETICS: MINION REAL-TIME SEQUENCING. INTED Proceedings, 2022, , .	0.0	O
2	Comparative analysis of wildâ€type accessions reveals novel determinants of Arabidopsis seed longevity. Plant, Cell and Environment, 2022, 45, 2708-2728.	2.8	9
3	Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. New Phytologist, 2021, 231, 679-694.	3.5	16
4	Specific Plasma MicroRNA Signatures in Predicting and Confirming Crohn's Disease Recurrence: Role and Pathogenic Implications. Clinical and Translational Gastroenterology, 2021, 12, e00416.	1.3	7
5	<i>PRX2</i> and <iprx25< i="">, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant, Cell and Environment, 2020, 43, 315-326.</iprx25<>	2.8	33
6	Identification of novel seed longevity genes related to oxidative stress and seed coat by genomeâ€wide association studies and reverse genetics. Plant, Cell and Environment, 2020, 43, 2523-2539.	2.8	45
7	Proteomic analysis of the ila2 mutant of Arabidopsis links translational regulation with photosynthesis, protein folding and ribosomal proteins. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	0
8	PthA4 ^{AT} , a 7.5â€repeats transcription activatorâ€like (TAL) effector from <i>Xanthomonas citri</i> ssp. <i>citri</i> , triggers citrus canker resistance. Molecular Plant Pathology, 2019, 20, 1394-1407.	2.0	13
9	Involvement of the eIF2α Kinase GCN2 in UV-B Responses. Frontiers in Plant Science, 2019, 10, 1492.	1.7	13
10	Plant responses underlying nonhost resistance of <i>Citrus limon</i> against <i>Xanthomonas campestris </i> campestris campestris	2.0	9
11	Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation. Journal of Plant Physiology, 2018, 224-225, 173-182.	1.6	22
12	Resistance to citrus canker induced by a variant of <i>Xanthomonas citri</i> ssp. <i>citri</i> is associated with a hypersensitive cell death response involving autophagyâ€associated vacuolar processes. Molecular Plant Pathology, 2017, 18, 1267-1281.	2.0	16
13	Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. Frontiers in Plant Science, 2016, 7, 1036.	1.7	55
14	TERPENE DOWN-REGULATION TRIGGERS INNATE IMMUNITY AND RESISTANCE TO FUNGAL PATHOGENS IN ORANGE FRUITS. Acta Horticulturae, 2015, , 687-693.	0.1	0
15	eIF2 kinases mediate β-lapachone toxicity in yeast and human cancer cells. Cell Cycle, 2015, 14, 630-640.	1.3	5
16	Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biology, 2015, 15, 14.	1.6	54
17	Surface Barriers of Mandarin â€ ⁻ Okitsu' Leaves Make a Major Contribution to Canker Disease Resistance. Phytopathology, 2014, 104, 970-976.	1.1	21
18	Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens Â. Plant Physiology, 2014, 164, 321-339.	2.3	60

#	Article	IF	Citations
19	Identification of transcription factors potentially involved in the juvenile to adult phase transition in Citrus. Annals of Botany, 2013, 112, 1371-1381.	1.4	11
20	Characterization of a Variant of <i>Xanthomonas citri</i> subsp. <i>citri</i> that Triggers a Host-Specific Defense Response. Phytopathology, 2013, 103, 555-564.	1.1	19
21	The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Molecular Breeding, 2012, 29, 575-587.	1.0	22
22	A Plant Virus Movement Protein Regulates the Gcn2p Kinase in Budding Yeast. PLoS ONE, 2011, 6, e27409.	1.1	6
23	Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance. Molecular Plant Pathology, 2011, 12, 879-897.	2.0	56
24	The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signaling and Behavior, 2011, 6, 1820-1823.	1.2	32
25	Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens Á Â. Plant Physiology, 2011, 156, 793-802.	2.3	99
26	TRANSCRIPTOMIC CHANGES ASSOCIATED WITH POSTHARVEST SUSCEPTIBILITY OF AN ABA-DEFICIENT MUTANT OF ORANGES TO NON-CHILLING PEEL PITTING. Acta Horticulturae, 2010, , 1079-1084.	0.1	0
27	TRANSCRIPTOMIC ANALYSIS OF ETHYLENE-INDUCED TOLERANCE TO NON-CHILLING PEEL PITTING IN CITRUS FRUIT. Acta Horticulturae, 2009, , 555-560.	0.1	6
28	The Short-Rooted Phenotype of the <i> brevis radix </i> Mutant Partly Reflects Root Abscisic Acid Hypersensitivity \hat{A} \hat{A} \hat{A} . Plant Physiology, 2009, 149, 1917-1928.	2.3	63
29	Shared and novel molecular responses of mandarin to drought. Plant Molecular Biology, 2009, 70, 403-420.	2.0	57
30	Global Regulation of Genes in Citrus Fruit in Response to the Postharvest Pathogen Penicillium digitatum., 2009,, 57-67.		0
31	Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell and Environment, 2008, 31, 1620-1633.	2.8	41
32	The first zygotic division in Arabidopsis requires <i>de novo</i> transcription of thymidylate kinase. Plant Journal, 2008, 53, 776-789.	2.8	40
33	A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics, 2008, 9, 318.	1.2	49
34	The alpha-N-acetyl-glucosaminidase gene is transcriptionally activated in male and female gametes prior to fertilization and is essential for seed development in Arabidopsis. Journal of Experimental Botany, 2008, 59, 3649-3659.	2.4	12
35	Class prediction of closely related plant varieties using gene expression profiling. Journal of Experimental Botany, 2007, 58, 1927-1933.	2.4	40
36	Gcn2p Regulates a G1/S Cell Cycle Checkpoint in Response to DNA Damage. Cell Cycle, 2007, 6, 2302-2305.	1,3	23

#	Article	IF	CITATIONS
37	Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology, 2007, 367, 298-306.	1.1	65
38	Global Analysis of Gene Expression During Development and Ripening of Citrus Fruit Flesh. A Proposed Mechanism for Citric Acid Utilization. Plant Molecular Biology, 2006, 62, 513-527.	2.0	162
39	Genetic analysis of two Arabidopsis DNA polymerase epsilon subunits during early embryogenesis. Plant Journal, 2005, 44, 223-236.	2.8	63
40	Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 2005, 57, 375-391.	2.0	104
41	A Conserved Domain of the Arabidopsis GNOM Protein Mediates Subunit Interaction and Cyclophilin 5 Binding. Plant Cell, 2000, 12, 343-356.	3.1	128
42	Developmental regulation of a cytosolic ascorbate peroxidase gene from tomato plants. Molecular Genetics and Genomics, 1999, 262, 212-219.	2.4	47
43	Two PR-1 Genes from Tomato Are Differentially Regulated and Reveal a Novel Mode of Expression for a Pathogenesis-Related Gene During the Hypersensitive Response and Development. Molecular Plant-Microbe Interactions, 1997, 10, 624-634.	1.4	133
44	Characterization of Defense-Related Genes Ectopically Expressed in Viroid-Infected Tomato Plants. Molecular Plant-Microbe Interactions, 1996, 9, 409.	1.4	59
45	The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development. Plant Molecular Biology Reporter, 0, , 1.	1.0	3
46	Transcription Factor DOF4.1 Regulates Seed Longevity in Arabidopsis via Seed Permeability and Modulation of Seed Storage Protein Accumulation. Frontiers in Plant Science, 0, 13, .	1.7	5