GraÅ¹/₄yna Anna PÅ,aza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/412551/publications.pdf

Version: 2024-02-01

55 papers 2,455 citations

236612 25 h-index 205818 48 g-index

56 all docs 56
docs citations

56 times ranked 3092 citing authors

#	Article	IF	CITATIONS
1	Hybrid nanolayers of star polymers and silver nanoparticles with antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112404.	2.5	3
2	Seasonal and Technological Shifts of the WHO Priority Multi-Resistant Pathogens in Municipal Wastewater Treatment Plant and Its Receiving Surface Water: A Case Study. International Journal of Environmental Research and Public Health, 2022, 19, 336.	1.2	3
3	Are Wetlands as an Integrated Bioremediation System Applicable for the Treatment of Wastewater from Underground Coal Gasification Processes?. Energies, 2022, 15, 4419.	1.6	3
4	Fluoroquinolone Resistance and Virulence Properties Among Wastewater <i>Aeromonas caviae</i> Isolates. Microbial Drug Resistance, 2021, 27, 179-189.	0.9	9
5	Surfactants of microbial origin as antibiofilm agents. International Journal of Environmental Health Research, 2021, 31, 401-420.	1.3	45
6	Insights into the microbial diversity and structure in a full-scale municipal wastewater treatment plant with particular regard to Archaea. PLoS ONE, 2021, 16, e0250514.	1.1	10
7	Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLoS ONE, 2021, 16, e0252691.	1.1	52
8	PN-ISO 37120 Standard – Known or Unknown by Local Administration – Preliminary Study. Multidisciplinary Aspects of Production Engineering, 2021, 4, 489-498.	0.2	1
9	Reception of the Smart City Concept in the Opinion of Local Administration Officials – A Case Study. Management Systems in Production Engineering, 2021, 29, 320-326.	0.4	8
10	Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Science of the Total Environment, 2020, 711, 134433.	3.9	56
11	Whole-Genome Sequences of Antibiotic-Resistant Aeromonas caviae Strains Isolated from Treated Wastewater. Microbiology Resource Announcements, 2020, 9, .	0.3	1
12	Effect of the freeze-drying process on the phenotypic diversity of Pseudomonas putida strains isolated from the interior of healthy roots of Sida hermaphrodita: Phenotype microarrays (PMs). Cryobiology, 2020, 96, 145-151.	0.3	2
13	Occurrence of Fluoroquinolones and Sulfonamides Resistance Genes in Wastewater and Sludge at Different Stages of Wastewater Treatment: A Preliminary Case Study. Applied Sciences (Switzerland), 2020, 10, 5816.	1.3	14
14	Surfactin as a Green Agent Controlling the Growth of Porous Calcite Microstructures. International Journal of Molecular Sciences, 2020, 21, 5526.	1.8	2
15	Biosurfactants: Eco-Friendly and Innovative Biocides against Biocorrosion. International Journal of Molecular Sciences, 2020, 21, 2152.	1.8	70
16	Moving to Smart Cities Through the Standard Indicators ISO 37120. Multidisciplinary Aspects of Production Engineering, 2020, 3, 617-630.	0.2	6
17	Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil. Current Microbiology, 2019, 76, 1320-1329.	1.0	13
18	Culturomics and metagenomics: In understanding of environmental resistome. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	35

#	Article	IF	CITATIONS
19	Effect of a lipopeptide biosurfactant on the precipitation of calcium carbonate. Colloids and Surfaces B: Biointerfaces, 2019, 174, 145-152.	2.5	24
20	A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology, 2018, 27, 352-359.	1.1	40
21	Properties of Antibiotic-Resistant Bacteria Isolated from Onsite Wastewater Treatment Plant in Relation to Biofilm Formation. Current Microbiology, 2018, 75, 639-649.	1.0	19
22	Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. Journal of Environmental Management, 2018, 209, 65-70.	3.8	66
23	Microbiological Risk Assessment and Bioprocess Engineering. Multidisciplinary Aspects of Production Engineering, 2018, 1, 233-239.	0.2	О
24	Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 2017, 14, 2181-2192.	1.8	55
25	Using phenotype microarrays in the assessment of the antibiotic susceptibility profile of bacteria isolated from wastewater in on-site treatment facilities. Folia Microbiologica, 2017, 62, 453-461.	1.1	10
26	Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as the stabilizing agent. Journal of Dispersion Science and Technology, 2017, 38, 1647-1655.	1.3	12
27	New and Emerging Risks Associated With "Green―Workplaces. Workplace Health and Safety, 2017, 65, 493-500.	0.7	8
28	The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation. E3S Web of Conferences, 2017, 22, 00029.	0.2	1
29	Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization. PLoS ONE, 2017, 12, e0169688.	1.1	12
30	TTC- Based Test as an Efficient Method to Determine Antibiofilm Activity of Silver Nanoparticles. E3S Web of Conferences, 2017, 17, 00015.	0.2	3
31	Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Scientia Horticulturae, 2017, 225, 802-809.	1.7	26
32	Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect. Molecules, 2016, 21, 26.	1.7	121
33	Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology. PLoS ONE, 2016, 11, e0147725.	1.1	33
34	Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils. Archives of Environmental Protection, 2016, 42, 3-11.	1.1	17
35	Monitoring the changes in a bacterial community in petroleum-polluted soil bioaugmented with hydrocarbon-degrading strains. Applied Soil Ecology, 2016, 105, 76-85.	2.1	53
36	Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World Journal of Microbiology and Biotechnology, 2016, 32, 157.	1.7	44

#	Article	IF	Citations
37	Synthesis of silver nanoparticles by <i>Bacillus subtilis</i> Tâ€lÂgrowing on agroâ€industrial wastes and producing biosurfactant. IET Nanobiotechnology, 2016, 10, 62-68.	1.9	14
38	Detection of biosurfactants in (i) Bacillus (i) species: genes and products identification. Journal of Applied Microbiology, 2015, 119, 1023-1034.	1.4	53
39	Application of the BIOLOG system for characterization of Serratia marcescens ss marcescens isolated from onsite wastewater technology (OSWT). Acta Biochimica Polonica, 2015, 62, 799-805.	0.3	27
40	Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles. International Journal of Molecular Sciences, 2014, 15, 13720-13737.	1.8	91
41	Changes in Enzyme Activities and Microbial Community Structure in Heavy Metalâ€Contaminated Soil under <i>in Situ</i> Aided Phytostabilization. Clean - Soil, Air, Water, 2014, 42, 1618-1625.	0.7	25
42	Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification. Ecotoxicology and Environmental Safety, 2014, 108, 294-301.	2.9	13
43	Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environmental Science and Pollution Research, 2014, 21, 9385-9395.	2.7	88
44	An assessment of the genotoxic effects of landfill leachates using bacterial and plant tests. Ecotoxicology and Environmental Safety, 2012, 75, 55-62.	2.9	26
45	Environmental Applications of Biosurfactants: Recent Advances. International Journal of Molecular Sciences, 2011, 12, 633-654.	1.8	764
46	Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environmental Monitoring and Assessment, 2010, 163, 477-488.	1.3	47
47	Reduction of Petroleum Hydrocarbons and Toxicity in Refinery Wastewater by Bioremediation. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 329-333.	1.3	27
48	Investigation of keratinolytic and non-keratinolytic fungi grown above or below a 1-cm sewage sludge blanket. International Biodeterioration and Biodegradation, 2007, 59, 119-124.	1.9	3
49	Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World Journal of Microbiology and Biotechnology, 2007, 23, 533-542.	1.7	31
50	Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. Journal of Petroleum Science and Engineering, 2006, 50, 71-77.	2.1	149
51	The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere, 2005, 59, 289-296.	4.2	146
52	Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil. Ecotoxicology and Environmental Safety, 2005, 62, 415-420.	2.9	19
53	Effect of cadmium on growth of potentially pathogenic soil fungi. Mycopathologia, 1998, 141, 93-100.	1.3	20
54	Keratinolytic fungi in sewage sludge. Mycopathologia, 1996, 136, 41-46.	1.3	32

 #	Article	IF	CITATIONS
55	Further statistical evaluation of the occurrence of keratinolytic fungi in dam sediments. International Journal of Environmental Health Research, 1996, 6, 39-47.	1.3	3