
Salvatore Perna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4125466/publications.pdf Version: 2024-02-01

SALVATORE DEDNA

#	Article	IF	CITATIONS
1	Magnetostatic Field Computation in Thin Films Based on <i>k</i> -Space Fast Convolution With Truncated Green's Function. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	1
2	Numerical Solution of the Fokker-Planck Equation by Spectral Collocation and Finite-Element Methods for Stochastic Magnetization Dynamics. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	3
3	A Local Gauge Description of the Interaction Between Magnetization and Electric Field in a Ferromagnet. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	3
4	Computational micromagnetics based on normal modes: Bridging the gap between macrospin and full spatial discretization. Journal of Magnetism and Magnetic Materials, 2022, 546, 168683.	2.3	13
5	Impact of Magneto-Electric Coupling on Metastable Magnetic States in Thin Disks. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
6	Magnetization switching in the inertial regime. Physical Review B, 2022, 105, .	3.2	20
7	Normal modes description of nonlinear ferromagnetic resonance for magnetic nanodots. AIP Advances, 2022, 12, 035244.	1.3	1
8	Analysis in <i>k</i> -Space of Magnetization Dynamics Driven by Strong Terahertz Fields. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	2
9	Microstructure Role in Permanent Magnet Eddy Current Losses. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	1
10	Micromagnetic study of statistical switching in magnetic tunnel junctions stabilized by perpendicular shape anisotropy. Physica B: Condensed Matter, 2020, 577, 411744.	2.7	6
11	Magnetization reversal driven by low dimensional chaos in a nanoscale ferromagnet. Nature Communications, 2019, 10, 543.	12.8	27
12	Transient Chaos in Nanomagnets Subject to Elliptically Polarized AC Applied Fields. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	2
13	Normal form of nonlinear oscillator model relevant to spin-torque nano-oscillator theory. Physica B: Condensed Matter, 2018, 549, 87-90.	2.7	4
14	Influence of the Second-Order Uniaxial Anisotropy on the Dynamical Proprieties of Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2017, 53, 1-7.	2.1	5
15	Current-Driven Hysteretic Synchronization in Vortex Nanopillar Spin-Transfer Oscillators. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	3
16	Effect of Temperature in Hysteretic Synchronization of Magnetic Vortex Spin-Torque Nano-Oscillators. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	3
17	Analytical Treatment of Nonlinear Ferromagnetic Resonance in Nanomagnets. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	6
18	Large Hysteresis effect in Synchronization of Nanocontact Vortex Oscillators by Microwave Fields. Scientific Reports, 2016, 6, 31630.	3.3	7

SALVATORE PERNA

#	Article	IF	CITATIONS
19	Chaotic dynamics and basin erosion in nanomagnets subject to time-harmonic magnetic fields. Physica B: Condensed Matter, 2016, 486, 121-125.	2.7	4
20	Analytical solution of precessional switching in nanomagnets driven by hard-axis field pulses. Physica B: Condensed Matter, 2016, 486, 126-129.	2.7	8
21	Noise-induced bifurcations in magnetization dynamics of uniaxial nanomagnets. Journal of Applied Physics, 2015, 117, .	2.5	6
22	Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations. Journal of Applied Physics, 2015, 117, .	2.5	6
23	Analysis of reliable sub-ns spin-torque switching under transverse bias magnetic fields. Journal of Applied Physics, 2015, 117, 17B716.	2.5	5
24	Phase-Flow Interpretation of Magnetization Relaxation in Nanomagnets. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	5
25	Analysis of Reliable Ultrafast Precessional Switching in the Presence of Transverse Applied Magnetic Fields. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	0