
Marco Borsari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4125400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of CytochromecRedox Potential:Â Axial Ligation and Protein Environment Effects. Journal of the American Chemical Society, 2002, 124, 5315-5324.	6.6	191
2	Curcuminoids as potential new iron-chelating agents: spectroscopic, polarographic and potentiometric study on their Fe(III) complexing ability. Inorganica Chimica Acta, 2002, 328, 61-68.	1.2	168
3	Redox Thermodynamics of the Native and Alkaline Forms of Eukaryotic and Bacterial Class I Cytochromes c. Biochemistry, 1997, 36, 16247-16258.	1.2	118
4	Redox Thermodynamics of Blue Copper Proteins. Journal of the American Chemical Society, 1999, 121, 501-506.	6.6	108
5	Silybin, a new iron-chelating agent. Journal of Inorganic Biochemistry, 2001, 85, 123-129.	1.5	104
6	Redox chemistry of superoxide dismutase. Cyclic voltammetry of wild-type enzymes and mutants on functionally relevant residues. Inorganic Chemistry, 1992, 31, 4649-4655.	1.9	77
7	Amide Group Coordination to the Pb2+Ion. Inorganic Chemistry, 1996, 35, 4239-4247.	1.9	76
8	Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations. Inorganic Chemistry, 2018, 57, 86-97.	1.9	72
9	The Reversible Opening of Water Channels in Cytochrome <i>c</i> Modulates the Heme Iron Reduction Potential. Journal of the American Chemical Society, 2012, 134, 13670-13678.	6.6	71
10	Bond-Mediated Electron Tunneling in Ruthenium-Modified High-Potential Ironâ^'Sulfur Protein. Journal of the American Chemical Society, 2000, 122, 4532-4533.	6.6	70
11	A Serine → Cysteine Ligand Mutation in the High Potential Ironâ^'Sulfur Protein fromChromatium vinosumProvides Insight into the Electronic Structure of the [4Feâ^'4S] Cluster. Journal of the American Chemical Society, 1996, 118, 75-80.	6.6	69
12	Redox Thermodynamics of the Fe3+/Fe2+Couple in Horseradish Peroxidase and Its Cyanide Complex. Journal of the American Chemical Society, 2002, 124, 26-27.	6.6	63
13	Medium and Temperature Effects on the Redox Chemistry of Cytochromec. European Journal of Inorganic Chemistry, 2001, 2001, 2989-3004.	1.0	62
14	Control of Metalloprotein Reduction Potential:Â Compensation Phenomena in the Reduction Thermodynamics of Blue Copper Proteinsâ€. Biochemistry, 2003, 42, 9214-9220.	1.2	58
15	Redox Chemistry and Acidâ^'Base Equilibria of Mitochondrial Plant Cytochromescâ€. Biochemistry, 1999, 38, 5553-5562.	1.2	56
16	The Redox Chemistry of the Covalently Immobilized Native and Low-pH Forms of Yeast Iso-1-cytochromec. Journal of the American Chemical Society, 2006, 128, 5444-5451.	6.6	54
17	Redox thermodynamics, acid-base equilibria and salt-induced effects for the cucumber basic protein. General implications for blue-copper proteins. Journal of Biological Inorganic Chemistry, 1997, 2, 350-359.	1.1	53
18	Anion Binding to Mitochondrial Cytochromes c Studied through Electrochemistry. Effects of the neutralization of surface charges on the redox potential. FEBS Journal, 1996, 241, 208-214.	0.2	50

#	Article	IF	CITATIONS
19	Flexible Printed Organic Electrochemical Transistors for the Detection of Uric Acid in Artificial Wound Exudate. Advanced Materials Interfaces, 2020, 7, 2001218.	1.9	50
20	Thermodynamics of the Alkaline Transition of Cytochromecâ€. Biochemistry, 1999, 38, 7900-7907.	1.2	49
21	Control of Metalloprotein Reduction Potential:Â The Role of Electrostatic and Solvation Effects Probed on Plastocyanin Mutantsâ€. Biochemistry, 2001, 40, 6422-6430.	1.2	44
22	Electron Transfer Properties and Hydrogen Peroxide Electrocatalysis of Cytochrome <i>c</i> Variants at Positions 67 and 80. Journal of Physical Chemistry B, 2010, 114, 1698-1706.	1.2	43
23	Redox thermodynamics of low-potential iron-sulfur proteins. Journal of Biological Inorganic Chemistry, 2000, 5, 748-760.	1.1	42
24	Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins. Journal of Biological Inorganic Chemistry, 2004, 9, 23-26.	1.1	42
25	Influence of Surface Charges on Redox Properties in High Potential Iron-Sulfur Proteins. Biochemical and Biophysical Research Communications, 1994, 203, 436-442.	1.0	40
26	Effects of nonspecific ion-protein interactions on the redox chemistry of cytochrome c. Journal of Biological Inorganic Chemistry, 1999, 4, 601-607.	1.1	40
27	The role of a conserved tyrosine residue in highâ€potential iron sulfur proteins. Protein Science, 1995, 4, 2562-2572.	3.1	39
28	Electron Transfer and Electrocatalytic Properties of the Immobilized Methionine80Alanine Cytochrome <i>c</i> Variant. Journal of Physical Chemistry B, 2008, 112, 1555-1563.	1.2	39
29	Effects of solvent on the redox properties of cytochrome c: cyclic voltammetry and 1H NMR experiments in mixed water-dimethylsulfoxide solutions. Inorganica Chimica Acta, 1998, 272, 168-175.	1.2	38
30	Enthalpic and Entropic Contributions to the Mutational Changes in the Reduction Potential of Azurinâ€. Biochemistry, 2001, 40, 6707-6712.	1.2	38
31	Effects of Mutational (Lys to Ala) Surface Charge Changes on the Redox Properties of Electrode-Immobilized Cytochrome c. Journal of Physical Chemistry B, 2007, 111, 10281-10287.	1.2	37
32	Free Energy of Transition for the Individual Alkaline Conformers of Yeast Iso-1-cytochromecâ€,‡. Biochemistry, 2007, 46, 1694-1702.	1.2	36
33	Understanding the Mechanism of Short-Range Electron Transfer Using an Immobilized Cupredoxin. Journal of the American Chemical Society, 2012, 134, 11848-11851.	6.6	34
34	BASELINE STUDIES OF THE CLAY MINERALS SOCIETY SOURCE CLAY MONTMORILLONITE STx-1b. Clays and Clay Minerals, 2017, 65, 220-233.	0.6	34
35	Electrochemical Behavior of Diphenyl Disulfide and Thiophenol on Glassy Carbon and Gold Electrodes in Aprotic Media. Electroanalysis, 2003, 15, 1192-1197.	1.5	33
36	Voltammetric and Surface-Enhanced Resonance Raman Spectroscopic Characterization of CytochromecAdsorbed on a 4-Mercaptopyridine Monolayer on Silver Electrodes. Langmuir, 2007, 23, 4340-4345.	1.6	33

#	Article	IF	CITATIONS
37	Thermodynamics of the Acid Transition in Blue Copper Proteinsâ€. Biochemistry, 2002, 41, 14293-14298.	1.2	32
38	Solvent-based deuterium isotope effects on the redox thermodynamics of cytochrome c. Journal of Biological Inorganic Chemistry, 2004, 9, 781-787.	1.1	32
39	Catalytic Reduction of Dioxygen and Nitrite Ion at a Met80Ala Cytochrome <i>c</i> -Functionalized Electrode. Journal of the American Chemical Society, 2008, 130, 15099-15104.	6.6	31
40	Oscillations in energy metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1353-1361.	0.5	31
41	A bis-histidine-ligated unfolded cytochrome c immobilized on anionic SAM shows pseudo-peroxidase activity. Electrochemistry Communications, 2012, 14, 29-31.	2.3	31
42	Bi-allelic mutations in MYL1 cause a severe congenital myopathy. Human Molecular Genetics, 2018, 27, 4263-4272.	1.4	31
43	Redox Properties of Cytochromec. Antioxidants and Redox Signaling, 2001, 3, 279-291.	2.5	30
44	pH-Induced Changes in Adsorbed Cytochrome <i>c</i> . Voltammetric and Surface-Enhanced Resonance Raman Characterization Performed Simultaneously at Chemically Modified Silver Electrodes. Langmuir, 2007, 23, 9898-9904.	1.6	30
45	The impact of urea-induced unfolding on the redox process of immobilised cytochrome c. Journal of Biological Inorganic Chemistry, 2010, 15, 1233-1242.	1.1	30
46	Redox properties of the basic blue protein (plantacyanin) from spinach. Journal of Inorganic Biochemistry, 1998, 69, 97-100.	1.5	29
47	Cyclic Voltammetry and 1H-NMR of Rhodopseudomonas Palustris Cytochrome c 2 pH-Dependent Conformational States. FEBS Journal, 1995, 232, 206-213.	0.2	28
48	Modulation of Bacillus pasteurii cytochrome c 553 reduction potential by structural and solution parameters. Journal of Biological Inorganic Chemistry, 1998, 3, 371-382.	1.1	28
49	Cyclooligosiloxanolate cluster complexes of transition metals and lanthanides. Journal of Molecular Catalysis A, 1996, 107, 313-321.	4.8	27
50	Redox and Electrocatalytic Properties of Mimochrome VI, a Synthetic Heme Peptide Adsorbed on Gold. Langmuir, 2010, 26, 17831-17835.	1.6	27
51	Voltammetric behaviour of bovine erythrocyte superoxide dismutase. Bioelectrochemistry, 1992, 27, 229-233.	1.0	26
52	Orientation-Dependent Kinetics of Heterogeneous Electron Transfer for Cytochrome <i>c</i> Immobilized on Gold:  Electrochemical Determination and Theoretical Prediction. Journal of Physical Chemistry C, 2007, 111, 12100-12105.	1.5	26
53	Electrochemical Response of Cytochrome <i>c</i> Immobilized on Smooth and Roughened Silver and Gold Surfaces Chemically Modified with 11-Mercaptounodecanoic Acid. Journal of Physical Chemistry C, 2009, 113, 2861-2866.	1.5	26
54	Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. Journal of Biological Inorganic Chemistry, 2015, 20, 531-540.	1.1	26

#	Article	IF	CITATIONS
55	Cyclosiloxane sandwich complexes of a lanthanide metal: Na6{[(C6H5SiO2)8]2Nd4(μ4-O)}. Journal of Organometallic Chemistry, 1996, 514, 29-35.	0.8	25
56	A surface-immobilized cytochrome c variant provides a pH-controlled molecular switch. Chemical Science, 2012, 3, 807-810.	3.7	25
57	The Active Site Loop Modulates the Reorganization Energy of Blue Copper Proteins by Controlling the Dynamic Interplay with Solvent. Journal of Physical Chemistry Letters, 2013, 4, 710-715.	2.1	25
58	Chemical trapping of gaseous H 2 S at high and low partial pressures by an iron complex immobilized inside the montmorillonite interlayer. Microporous and Mesoporous Materials, 2018, 265, 8-17.	2.2	25
59	Redox properties and acid–base equilibria of zucchini mavicyanin. Journal of Inorganic Biochemistry, 2001, 83, 223-227.	1.5	24
60	Structural Basis for the Molecular Properties of Cytochromec6â€. Biochemistry, 2002, 41, 14689-14699.	1.2	24
61	Ligand Loop Effects on the Free Energy Change of Redox and pH-Dependent Equilibria in Cupredoxins Probed on Amicyanin Variants. Biochemistry, 2005, 44, 9944-9949.	1.2	24
62	Unfolding of cytochrome c immobilized on self-assembled monolayers. An electrochemical study. Electrochimica Acta, 2011, 56, 6925-6931.	2.6	24
63	Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. Journal of Biological Inorganic Chemistry, 2017, 22, 615-623.	1.1	24
64	Effective and Selective Trapping of Volatile Organic Sulfur Derivatives by Montmorillonite Intercalated with a μ-oxo Fe(III)–Phenanthroline Complex. ACS Applied Materials & Interfaces, 2017, 9, 1045-1056.	4.0	23
65	Anion Binding to Cytochromec2: Implications on Protein–Ion Interactions in Class I Cytochromesc. Archives of Biochemistry and Biophysics, 1997, 339, 283-290.	1.4	22
66	A Refined Model for [Fe3S4]0 Clusters in Proteins. Angewandte Chemie - International Edition, 2000, 39, 3620-3622.	7.2	22
67	Redox thermodynamics of cytochrome c in mixed water–organic solvent solutions. Inorganica Chimica Acta, 2003, 349, 182-188.	1.2	22
68	Axial ligation and polypeptide matrix effects on the reduction potential of heme proteins probed on their cyanide adducts. Journal of Biological Inorganic Chemistry, 2005, 10, 643-651.	1.1	22
69	Thermodynamic and kinetic aspects of the electron transfer reaction of bovine cytochrome c immobilized on 4-mercaptopyridine and 11-mercapto-1-undecanoic acid films. Journal of Applied Electrochemistry, 2008, 38, 885-891.	1.5	20
70	Unambiguous Assignment of Reduction Potentials in Diheme Cytochromes. Journal of Physical Chemistry B, 2014, 118, 7554-7560.	1.2	20
71	Redox interconversion of [ReV O]3+ ⇌ [ReIII]3+ centers in octahedral 4,6-dimethyl-pyrimidine-2-thiolate/triphenylphosphine rhenium (V) and rhenium (III) mixed complexes. Polyhedron, 1997, 16, 2093-2104.	1.0	19
72	Conservation of the free energy change of the alkaline isomerization in mitochondrial and bacterial cytochromes c. Archives of Biochemistry and Biophysics, 2002, 404, 227-233.	1.4	19

#	Article	IF	CITATIONS
73	Redox thermodynamics of cytochrome c adsorbed on mercaptoundecanol monolayer electrodes. Journal of Electroanalytical Chemistry, 2004, 564, 45-52.	1.9	19
74	Factors Affecting the Electron Transfer Properties of an Immobilized Cupredoxin. Journal of Physical Chemistry C, 2010, 114, 22322-22329.	1.5	19
75	Self-Assembly of Mono- And Bidentate Oligoarylene Thiols onto Polycrystalline Au. Langmuir, 2013, 29, 13198-13208.	1.6	19
76	How the Reorganization Free Energy Affects the Reduction Potential of Structurally Homologous Cytochromes. Journal of Physical Chemistry Letters, 2014, 5, 1534-1540.	2.1	19
77	Effectiveness of the cadmium(II) ion in promoting sulfonamide nitrogen deprotonation. 113Cd NMR, polarographic, and pH-Metric investigations on the cadmium(II)-N-tosylglycinate and cadmium(II)-N-dansylglycinate systems in aqueous and methanolic solutions. Inorganic Chemistry, 1988. 27, 1587-1592.	1.9	18
78	Heterogeneous Electron Transfer of a Two-Centered Heme Protein: Redox and Electrocatalytic Properties of Surface-Immobilized Cytochrome c4. Journal of Physical Chemistry B, 2009, 113, 13645-13653.	1.2	18
79	Structure and function of Aspergillus niger laccase McoG. Biocatalysis, 2017, 3, 1-21.	2.3	18
80	Cyclic Voltammetry and 1H-NMR of Rhodopseudomonas palustris Cytochrome c2. Probing Surface Charges through Anion-Binding Studies. FEBS Journal, 1995, 233, 335-339.	0.2	17
81	Cloning, expression, and physicochemical characterization of a new diheme cytochrome c from Shewanella baltica OS155. Journal of Biological Inorganic Chemistry, 2011, 16, 461-471.	1.1	17
82	Cadmium(2+) and zinc(2+) interactions with amino acids N-substituted by a sulfonic group. Effect of the additional ligand 2,2'-bipyridine on the metal-induced amide deprotonation. Inorganic Chemistry, 1991, 30, 498-502.	1.9	16
83	Experimental evidence for the role of buried polar groups in determining the reduction potential of metalloproteins: the S79P variant of Chromatium vinosum HiPIP. Journal of Biological Inorganic Chemistry, 1999, 4, 692-700.	1.1	16
84	Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met–His/His ligation switch. Metallomics, 2014, 6, 874.	1.0	16
85	Filling the Gap in Extended Metal Atom Chains: Ferromagnetic Interactions in a Tetrairon(II) String Supported by Oligo-1±-pyridylamido Ligands. Inorganic Chemistry, 2018, 57, 5438-5448.	1.9	16
86	Coordination properties of N-p-tolylsulfonyl-l-glutamic acid toward metalII. Polyhedron, 1999, 18, 1983-1989.	1.0	15
87	A poly(alkylsulfany)thiophene functionalized with carboxylic groups. Polymer, 2006, 47, 775-784.	1.8	15
88	Siloxane clusters of higher valence transition metals: Redox properties. Journal of Organometallic Chemistry, 1994, 467, 165-167.	0.8	14
89	Thermodynamics and kinetics of the electron transfer process of spinach plastocyanin adsorbed on a modified gold electrode. Journal of Electroanalytical Chemistry, 2009, 626, 123-129.	1.9	14
90	pH and Solvent H/D Isotope Effects on the Thermodynamics and Kinetics of Electron Transfer for Electrode-Immobilized Native and Urea-Unfolded Stellacyanin. Langmuir, 2012, 28, 15087-15094.	1.6	14

#	Article	IF	CITATIONS
91	Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts. Electrochimica Acta, 2015, 176, 1019-1028.	2.6	14
92	The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coordination Chemistry Reviews, 2021, 445, 214071.	9.5	14
93	Synthesis, spectroscopic, magnetic, conductometric and electro-chemical investigations of nickel(II)-1-phenyl-4,6-dimethylpyrimidine-2-thione complexes. Transition Metal Chemistry, 1995, 20, 212.	0.7	13
94	Redox thermodynamics of cytochromes c subjected to urea induced unfolding. Journal of Applied Electrochemistry, 2009, 39, 2181-2190.	1.5	13
95	Stepwise structuring of the adsorbed layer modulates the physico-chemical properties of hybrid materials from phyllosilicates interacting with the μ-oxo Fe+3-phenanthroline complex. Microporous and Mesoporous Materials, 2015, 211, 19-29.	2.2	13
96	The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. Journal of Inorganic Biochemistry, 2018, 178, 70-86.	1.5	13
97	Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry, 2020, 136, 107628.	2.4	13
98	Ternary copper(II) complexes with 2,2′-bipyridine and N-tosyl-substituted amino acids. Part 2. Crystal and molecular structure of aqua(2,2′-bipyridine)bis(N-tosyl-DL-asparaginato-O)copper(II) dihydrate and (2,2′-bipyridine)(N-tosyl-DL-asparaginato-NO)copper(II) monohydrate. Journal of the Chemical Society Dalton Transactions, 1990, , 97-100.	1.1	12
99	Copper(II) complexes with N-sulphonyl amino acids. Structure-stability relationships in binary species and ternary complexes with 2,2′-bipyridine. Journal of the Chemical Society Dalton Transactions, 1991, , 2961-2965.	1.1	12
100	Electrochemistry of 4,6-dimethyl-2-thiopyrimidine and 4,6-dimethyl-1-phenyl-2-thiopyrimidine in dimethylformamide. Journal of Electroanalytical Chemistry, 1994, 368, 227-234.	1.9	12
101	Magnetic Resonance of Fe-S Clusters: Isolation and Characterization of a 7Fe Ferredoxin from Rhodopseudomonas palustris. Archives of Biochemistry and Biophysics, 1995, 320, 149-154.	1.4	12
102	The influence of a surface charge on the electronic and steric structure of a high potential iron-sulfur protein. Journal of Biological Inorganic Chemistry, 1996, 1, 257-263.	1.1	12
103	Synthesis, structural characterization and electronic properties of 3,3″″′-bis(butylsulfanyl)-2,2′â^¶5′,2″â^¶5″,2‴â^¶5‴,2″″″″″,2‴″-sexithiop 1, 1999, , 3207-3212.	bhen e. gour	nal 🏿 the Chu
104	Effects of Specific Anion-Protein Binding on the Alkaline Transition of Cytochrome c. Archives of Biochemistry and Biophysics, 2001, 386, 117-122.	1.4	12
105	Axial iron coordination and spin state change in a heme c upon electrostatic protein–SAM interaction. Physical Chemistry Chemical Physics, 2013, 15, 13499.	1.3	12
106	Electrocatalytic Properties of Immobilized Heme Proteins: Basic Principles and Applications. ChemElectroChem, 2019, 6, 5172-5185.	1.7	12
107	Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation. Redox Biology, 2020, 37, 101691.	3.9	12
108	Binding of S. cerevisiae iso-1 cytochrome c and its surface lysine-to-alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio. Journal of Biological Inorganic Chemistry, 2020, 25, 467-487.	1.1	12

#	Article	IF	CITATIONS
109	Theoretical study of the electroreduction of halogenated aromatic compounds. Part 2.—Bromine and chlorine derivatives in different organic solvents. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3931-3939.	1.7	11
110	Immobilized unfolded cytochrome c acts as a catalyst for dioxygen reduction. Chemical Communications, 2011, 47, 11122.	2.2	11
111	Experimental and Theoretical Investigation of Intercalation and Molecular Structure of Organo-Iron Complexes in Montmorillonite. Journal of Physical Chemistry C, 2018, 122, 25422-25432.	1.5	11
112	Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nature Communications, 2019, 10, 1396.	5.8	11
113	A new material based on montmorillonite and Cu(II)-phenanthroline complex for effective capture of ammonia from gas phase. Applied Clay Science, 2020, 184, 105386.	2.6	11
114	Urea-induced denaturation of immobilized yeast iso-1 cytochrome c: Role of Met80 and Tyr67 in the thermodynamics of unfolding and promotion of pseudoperoxidase and nitrite reductase activities. Electrochimica Acta, 2020, 363, 137237.	2.6	11
115	Physical insights from the Frumkin isotherm applied to electrolyte gated organic transistors as protein biosensors. Journal of Materials Chemistry C, 2021, 9, 10965-10974.	2.7	11
116	Mutation of the Metal-Bridging Proton-Donor His63 Residue in Human Cu, Zn Superoxide Dismutase. Biochemical and Biophysical Analysis of the His63Cys Mutant. FEBS Journal, 1995, 232, 220-225.	0.2	10
117	Amide nitrogen co-ordination of Colland Nillin ternary 2,2′-bipyridine-containing systems. A solution and solid-state study. Journal of the Chemical Society Dalton Transactions, 1996, , 4201-4205.	1.1	10
118	Cloning, expression and physicochemical characterization of a di-heme cytochrome c 4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Biological Inorganic Chemistry, 2008, 13, 789-799.	1.1	10
119	Crystal chemical characterization and computational modeling of a μ-oxo Fe(III) complex with 1,10-phenanthroline clarify its interaction and reactivity with montmorillonite. Rendiconti Lincei, 2017, 28, 605-614.	1.0	10
120	Tetrairon(<scp>ii</scp>) extended metal atom chains as single-molecule magnets. Dalton Transactions, 2021, 50, 7571-7589.	1.6	10
121	Sulphonamide nitrogen-containing N-protected amino acids interacting with palladium(II). Polarographic and pH-metric investigation in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1990, , 1585.	1.1	9
122	Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity. Scientific Reports, 2016, 6, 35865.	1.6	9
123	Detection of Neurofilament Light Chain with Labelâ€Free Electrolyteâ€Gated Organic Fieldâ€Effect Transistors. Advanced Materials Interfaces, 2022, 9, .	1.9	9
124	Palladium(II) complexes of N-sulfonyl-asparagine and glutamine. Evidence for metal coordination of the side-chain. Inorganica Chimica Acta, 1998, 273, 397-402.	1.2	8
125	Active site loop dictates the thermodynamics of reduction and ligand protonation in cupredoxins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 995-1000.	1.1	8
126	Electrowetting of Nitro-Functionalized Oligoarylene Thiols Self-Assembled on Polycrystalline Gold. ACS Applied Materials & Interfaces, 2015, 7, 3902-3909.	4.0	8

#	Article	IF	CITATIONS
127	Trapping at the Solid–Gas Interface: Selective Adsorption of Naphthalene by Montmorillonite Intercalated with a Fe(III)–Phenanthroline Complex. ACS Omega, 2019, 4, 7785-7794.	1.6	8
128	Tuning of halobenzenes uptake in montmorillonite from gas phase through a functionalization process involving Cu(II)-phenanthroline and heptanethiol. Applied Clay Science, 2020, 192, 105642.	2.6	8
129	Phase transition in the adsorption process of N-dansylglycinate anion on mercury. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 279, 321-330.	0.3	7
130	Electrochemical behaviour of oligometallic sandwich complexes of cyclosiloxanolate ligands. Inorganica Chimica Acta, 1997, 258, 139-144.	1.2	7
131	Electrostatic Effects on the Thermodynamics of Protonation of Reduced Plastocyanin. ChemBioChem, 2005, 6, 692-696.	1.3	7
132	Surface Immobilized His-tagged Azurin as a Model Interface for the Investigation of Vectorial Electron Transfer in Biological Systems. Electrochimica Acta, 2015, 178, 638-646.	2.6	7
133	Palladium(II) complexes of N-sulfonylamino acids. Part 2. Co-ordination behaviour under strongly acidic conditions. Journal of the Chemical Society Dalton Transactions, 1994, , 279.	1.1	6
134	Structural properties of adsorbent phyllosilicates rule the entrapping ability of intercalated iron-phenanthroline complex towards thiols. Microporous and Mesoporous Materials, 2019, 285, 150-160.	2.2	6
135	Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite. Minerals (Basel, Switzerland), 2020, 10, 510.	0.8	6
136	Electrochemical behaviour of chlorobenzenesulphonamide derivatives at the mercury electrode in non-aqueous solvents. Electrochimica Acta, 1988, 33, 1085-1091.	2.6	5
137	Ternary copper(II) complexes with 2,2′-bipyridine and N-tosyl-substituted amino acids. Part 1. Polarographic and pH-metric study. Journal of the Chemical Society Dalton Transactions, 1990, , 91-95.	1.1	5
138	Reductive electron transfer on trichloromethyl derivatives of benzene and pyridine studied by electrochemical methods. Journal of the Chemical Society Perkin Transactions II, 1997, , 1839-1844.	0.9	5
139	Cyclic voltammetry and spectroelectrochemistry of cytochrome c8 from Rubrivivax gelatinosus. Implications in photosynthetic electron transfer. Inorganica Chimica Acta, 1997, 263, 379-384.	1.2	5
140	How the Dynamics of the Metal-Binding Loop Region Controls the Acid Transition in Cupredoxins. Biochemistry, 2013, 52, 7397-7404.	1.2	5
141	Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome <i>c</i> : comparing the solution <i>vs.</i> immobilized state. RSC Chemical Biology, 2020, 1, 421-435.	2.0	5
142	Selfâ€Assembled Structures from Solid Cadmium(II) Acetate in Thiol/Ethanol Solutions: A Novel Type of Organic Chemical Garden. ChemSystemsChem, 2021, 3, e2000048.	1.1	5
143	Electrochemical behaviour of N-tosylglycine and N-dansylglycine in several solvents. The role of the RSO2-groups on the physicochemical properties of glycine. Electrochimica Acta, 1989, 34, 759-765.	2.6	4
144	Isolation and physico-chemical characterization of a cytochrome c from the methylotrophic yeast Hansenula polymorpha. BBA - Proteins and Proteomics, 2000, 1543, 174-188.	2.1	4

#	ARTICLE	IF	CITATIONS
145	Excitation-Energy Transfer Paths from Tryptophans to Coordinated Copper Ions in Engineered Azurins: a Source of Observables for Monitoring Protein Structural Changes. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1329-1349.	1.4	4
146	Electron Transfer and Electrocatalytic Properties of the Immobilized Met80Ala Cytochrome <i>c</i> Variant in Dimethylsulfoxide. ChemElectroChem, 2021, 8, 2115-2123.	1.7	4
147	How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules, 2021, 26, 4950.	1.7	4
148	Theoretical study of the electroreduction of halogenated aromatic compounds. Part 3.—o-, m- and p-dibromobenzenes studied by AM1 and PM3 methods. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3241-3244.	1.7	3
149	Palladium(II) complexes of N-sulfonylamino acids. Part 3. Ternary adducts with 2,2′-bipyridine. Journal of the Chemical Society Dalton Transactions, 1994, , 285-287.	1.1	3
150	Medium and Temperature Effects on the Redox Chemistry of Cytochrome c. , 2001, 2001, 2989.		3
151	Anodic behaviour of the mercury electrode in aqueous solution of 1,10-phenanthroline. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 293, 209-218.	0.3	2
152	Polarographic studies of Chromatium vinosum high-potential iron protein. Bioelectrochemistry, 1991, 26, 123-129.	1.0	2
153	Electrochemical behaviour of oxaziridines at the mercury electrode in organic solvent. Electrochimica Acta, 1991, 36, 97-99.	2.6	2
154	Electrochemical reduction of benzamide and their o- and p-halo-derivatives in non-aqueous solvents. Electrochimica Acta, 1994, 39, 2723-2728.	2.6	2
155	Electrochemistry of 2-thio- and 2-oxo-pyrimidines in dimethyl formamide in the presence of dioxygen. Inorganica Chimica Acta, 1998, 270, 145-150.	1.2	2
156	Computational investigation of the electron transfer complex between neuroglobin and cytochrome c. Supramolecular Chemistry, 2017, 29, 846-852.	1.5	2
157	Molecular structure and ammonia gas adsorption capacity of a Cu(II)-1,10-phenanthroline complex intercalated in montmorillonite by DFT simulations. Microporous and Mesoporous Materials, 2021, 327, 111408.	2.2	2
158	Copper(II) complexes with 1-phenyl-4,6-dimethylpyrimidine-2-thione. Chemical, spectroscopic, magnetic, conductivity and polarographic studies. Collection of Czechoslovak Chemical Communications, 1990, 55, 2199-2215.	1.0	2
159	Preparation, Spectroscopic, Magnetic, Conductometric and Polarographic Characterization of Cobalt(II)-1-phenyl-4,6-dimethylpyrimidine-2-thione Complexes. Collection of Czechoslovak Chemical Communications, 1993, 58, 1569-1590.	1.0	2
160	Chemical and biochemical thermodynamics reunification (IUPAC Technical Report). Pure and Applied Chemistry, 2021, 93, 243-252.	0.9	2
161	Gaseous Heptanethiol Removal by a Fe ³⁺ -Phenanthroline–Kaolinite Hybrid Material. ACS Omega, 2021, 6, 32589-32596.	1.6	2
162	The effect of lateral chains on the electrochemical and physico-chemical behaviour of tosyl-N-protected aminoacids. Electrochimica Acta, 1989, 34, 1581-1586.	2.6	1

#	Article	IF	CITATIONS
163	Substituent Effects in the Reduction Behaviour of Thio- and Oxopyrimidines in Non-Aqueous Solvents. Australian Journal of Chemistry, 2003, 56, 1233.	0.5	1
164	Solvent tunes the peroxidase activity of cytochrome c immobilized on kaolinite. Applied Clay Science, 2015, 118, 316-324.	2.6	1
165	The Copper Chemical Garden as a Low Cost and Efficient Material for Breaking Down Air Pollution by Gaseous Ammonia. ChemSystemsChem, 0, , e2100034.	1.1	1
166	Pseudoperoxidase activity, conformational stability and aggregation propensity of the His98Tyr myoglobin variant: Implications for the onset of myoglobinopathy. FEBS Journal, 2021, , .	2.2	1
167	Role of the solvent in the oxidative process of a Hg electrode in the presence of thiopyrimidine derivatives. Canadian Journal of Chemistry, 2005, 83, 1132-1136.	0.6	0
168	Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D. Data in Brief, 2020, 33, 106345.	0.5	0