Nathalie Busschaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4125340/publications.pdf

Version: 2024-02-01

43 papers

4,298 citations

28 h-index 223800 46 g-index

51 all docs

51 docs citations

51 times ranked

3709 citing authors

#	Article	IF	CITATIONS
1	Applications of Supramolecular Anion Recognition. Chemical Reviews, 2015, 115, 8038-8155.	47.7	1,025
2	Anion receptor chemistry: highlights from 2011 and 2012. Chemical Society Reviews, 2014, 43, 205-241.	38.1	439
3	Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nature Chemistry, 2014, 6, 885-892.	13.6	348
4	Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination. Journal of the American Chemical Society, 2011, 133, 14136-14148.	13.7	277
5	Squaramides as Potent Transmembrane Anion Transporters. Angewandte Chemie - International Edition, 2012, 51, 4426-4430.	13.8	222
6	A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nature Chemistry, 2017, 9, 667-675.	13.6	201
7	Smallâ€Molecule Lipidâ€Bilayer Anion Transporters for Biological Applications. Angewandte Chemie - International Edition, 2013, 52, 1374-1382.	13.8	167
8	Nonprotonophoric Electrogenic Clâ^' Transport Mediated by Valinomycin-like Carriers. CheM, 2016, 1, 127-146.	11.7	128
9	Tripodal transmembrane transporters for bicarbonate. Chemical Communications, 2010, 46, 6252.	4.1	127
10	Thiosquaramides: pH switchable anion transporters. Chemical Science, 2014, 5, 3617-3626.	7.4	109
11	Highâ€Affinity Anion Binding by Steroidal Squaramide Receptors. Angewandte Chemie - International Edition, 2015, 54, 4592-4596.	13.8	106
12	Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chemical Science, 2013, 4, 3036.	7.4	104
13	Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chemical Science, 2014, 5, 1118.	7.4	95
14	pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones. Journal of the American Chemical Society, 2016, 138, 8301-8308.	13.7	75
15	Determinants of Ion-Transporter Cancer Cell Death. CheM, 2019, 5, 2079-2098.	11.7	73
16	Acylthioureas as anion transporters: the effect of intramolecular hydrogen bonding. Organic and Biomolecular Chemistry, 2014, 12, 62-72.	2.8	71
17	Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chemical Science, 2019, 10, 9663-9672.	7.4	70
18	Dynamic Covalent Transport of Amino Acids across Lipid Bilayers. Journal of the American Chemical Society, 2015, 137, 1476-1484.	13.7	54

#	Article	IF	CITATIONS
19	pH switchable anion transport by an oxothiosquaramide. Chemical Communications, 2015, 51, 10107-10110.	4.1	51
20	Detection of nerve agent via perturbation of supramolecular gel formation. Chemical Communications, 2013, 49, 9119.	4.1	48
21	QSAR analysis of substituent effects on tambjamine anion transporters. Chemical Science, 2016, 7, 1600-1608.	7.4	47
22	Dissecting the chloride–nitrate anion transport assay. Chemical Communications, 2017, 53, 9230-9233.	4.1	39
23	Chloride anion transporters inhibit growth of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Chemical Communications, 2016, 52, 7560-7563.	4.1	37
24	Towards the Discrimination of Carboxylates by Hydrogenâ∈Bond Donor Anion Receptors. Chemistry - A European Journal, 2015, 21, 5145-5160.	3.3	34
25	New Insights into the Anion Transport Selectivity and Mechanism of Trenâ€based Trisâ€(thio)ureas. Chemistry - A European Journal, 2018, 24, 10475-10487.	3.3	30
26	Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science, 2019, 10, 1976-1985.	7.4	29
27	Accurate Method To Quantify Binding in Supramolecular Chemistry. Journal of Organic Chemistry, 2013, 78, 7796-7808.	3.2	27
28	Real-Time Recording of the Cellular Effects of the Anion Transporter Prodigiosin. CheM, 2018, 4, 879-895.	11.7	27
29	Full elucidation of the transmembrane anion transport mechanism of squaramides using <i>in silico</i> investigations. Physical Chemistry Chemical Physics, 2018, 20, 20796-20811.	2.8	23
30	An anion-binding fluorinated alcohol isophthalamide isostere. RSC Advances, 2014, 4, 5389.	3.6	16
31	Squaramide-based synthetic chloride transporters activate TFEB but block autophagic flux. Cell Death and Disease, 2019, 10, 242.	6.3	15
32	Tris–thiourea tripodal-based molecules as chloride transmembrane transporters: insights from molecular dynamics simulations. Soft Matter, 2014, 10, 3608.	2.7	14
33	A Modular Synthesis of Conformationally Preorganised Extended βâ€Strand Peptidomimetics. Chemistry - A European Journal, 2015, 21, 14699-14702.	3.3	13
34	An \hat{l}_{\pm} -helical peptidomimetic scaffold for dynamic combinatorial library formation. Chemical Communications, 2017, 53, 313-316.	4.1	11
35	Enhancing the selectivity of optical sensors using synthetic transmembrane ion transporters. Chemical Communications, 2020, 56, 14455-14458.	4.1	10
36	Aromatic isophthalamides aggregate in lipid bilayers: evidence for a cooperative transport mechanism. Organic and Biomolecular Chemistry, 2015, 13, 3136-3143.	2.8	9

3

#	Article	IF	CITATIONS
37	Bactericidal urea crown ethers target phosphatidylethanolamine membrane lipids. Organic and Biomolecular Chemistry, 2021, 19, 3838-3843.	2.8	9
38	Managing research throughout COVID-19: Lived experiences of supramolecular chemists. CheM, 2022, 8, 299-311.	11.7	7
39	Pregnancy in the lab. Nature Reviews Chemistry, 0, , .	30.2	5
40	A supramolecular host for phosphatidylglycerol (PG) lipids with antibacterial activity. Organic and Biomolecular Chemistry, 2021, , .	2.8	4
41	Increasing membrane permeability of carboxylic acid-containing drugs using synthetic transmembrane anion transporters. Chemical Communications, 2021, 57, 13122-13125.	4.1	3
42	A Modular Synthesis of Conformationally Preorganised Extended \hat{l}^2 -Strand Peptidomimetics. Chemistry - A European Journal, 2015, 21, 14657-14657.	3.3	1
43	Improving Structural Stability and Anticoagulant Activity of a Thrombin Binding Aptamer by Aromatic Modifications. ChemBioChem, 2022, 23, .	2.6	1