
Laura A Garvican-Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4124775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. Journal of Physiology, 2017, 595, 2785-2807.	2.9	281
2	Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. British Journal of Sports Medicine, 2013, 47, i31-i39.	6.7	128
3	Time for a new metric for hypoxic dose?. Journal of Applied Physiology, 2016, 121, 352-355.	2.5	92
4	Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. British Journal of Sports Medicine, 2013, 47, i26-i30.	6.7	65
5	Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure. PLoS ONE, 2015, 10, e0135120.	2.5	60
6	Changes in blood gas transport of altitude native soccer players near sea-level and sea-level native soccer players at altitude (ISA3600). British Journal of Sports Medicine, 2013, 47, i93-i99.	6.7	32
7	The athlete's hematological response to hypoxia: A metaâ€analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. American Journal of Hematology, 2018, 93, 74-83.	4.1	28
8	Effect of Environmental and Feedback Interventions on Pacing Profiles in Cycling: A Meta-Analysis. Frontiers in Physiology, 2016, 7, 591.	2.8	27
9	Stage racing at altitude induces hemodilution despite an increase in hemoglobin mass. Journal of Applied Physiology, 2014, 117, 463-472.	2.5	23
10	Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners. Journal of Sports Science and Medicine, 2015, 14, 413-7.	1.6	22
11	Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players. British Journal of Sports Medicine, 2013, 47, i70-i73.	6.7	20
12	Validation of a blood marker for plasma volume in endurance athletes during a liveâ€high trainâ€low altitude training camp. Drug Testing and Analysis, 2018, 10, 1176-1183.	2.6	18
13	Influence of combined iron supplementation and simulated hypoxia on the haematological module of the athlete biological passport. Drug Testing and Analysis, 2018, 10, 731-741.	2.6	15
14	Iron Supplementation and Altitude: Decision Making Using a Regression Tree. Journal of Sports Science and Medicine, 2016, 15, 204-5.	1.6	15
15	The effects of transmeridian travel and altitude on sleep: preparation for football competition. Journal of Sports Science and Medicine, 2014, 13, 718-20.	1.6	14
16	Normobaric Hypoxia Reduces V˙O2 at Different Intensities in Highly Trained Runners. Medicine and Science in Sports and Exercise, 2019, 51, 174-182.	0.4	12
17	A multiâ€parametric approach to remove the influence of plasma volume on the athlete biological passport during a Union Cycliste Internationale cycling stage race. Drug Testing and Analysis, 2020, 12, 1252-1263.	2.6	10
18	Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600). Journal of Sports Science and Medicine, 2015, 14, 98-102.	1.6	8

#	Article	IF	CITATIONS
19	Training Quantification and Periodization during Live High Train High at 2100 M in Elite Runners: An Observational Cohort Case Study. Journal of Sports Science and Medicine, 2018, 17, 607-616.	1.6	8
20	Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia. Journal of Sports Science and Medicine, 2015, 14, 776-82.	1.6	5
21	Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes. Nutrients, 2022, 14, 1929.	4.1	5