
Chunwen Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4124662/publications.pdf Version: 2024-02-01

CHIINWEN SIIN

#	Article	IF	CITATIONS
1	Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33, 363-386.	16.0	1,311
2	Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14, 1125-1144.	2.5	1,017
3	Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and Environmental Science, 2012, 5, 8475.	30.8	984
4	Monodisperse Porous LiFePO ₄ Microspheres for a High Power Li-Ion Battery Cathode. Journal of the American Chemical Society, 2011, 133, 2132-2135.	13.7	628
5	Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007, 171, 247-260.	7.8	518
6	A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 2018, 45, 413-419.	16.0	475
7	Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Journal of Materials Chemistry, 2012, 22, 21679.	6.7	455
8	Singleâ€Atom Feâ€N <i>_x</i> as an Efficient Electrocatalyst for Zinc–Air Batteries. Advanced Functional Materials, 2019, 29, 1808872.	14.9	373
9	3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Applied Catalysis B: Environmental, 2021, 280, 119411.	20.2	324
10	Controlled synthesis of CeO2nanorods by a solvothermal method. Nanotechnology, 2005, 16, 1454-1463.	2.6	315
11	Recent Advances in Perovskiteâ€₹ype Oxides for Energy Conversion and Storage Applications. Advanced Energy Materials, 2021, 11, 2000459.	19.5	285
12	Wearable Powerâ€Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiberâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1601048.	19.5	266
13	Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres. Journal of Physical Chemistry B, 2006, 110, 13445-13452.	2.6	244
14	A High-Performance and Durable Poly(ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery. Journal of Physical Chemistry C, 2018, 122, 9852-9858.	3.1	199
15	A Highly Efficient and Selfâ€Stabilizing Metallicâ€Glass Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	21.0	195
16	Graphene–Co ₃ O ₄ nanocomposite as an efficient bifunctional catalyst for lithium–air batteries. Journal of Materials Chemistry A, 2014, 2, 7188-7196.	10.3	192
17	Progress in corrosion resistant materials for supercritical water reactors. Corrosion Science, 2009, 51, 2508-2523.	6.6	186
18	A Highâ€Performance Monolithic Solidâ€State Sodium Battery with Ca ²⁺ Doped Na ₃ Zr ₂ Si ₂ PO ₁₂ Electrolyte. Advanced Energy Materials, 2019, 9, 1901205.	19.5	174

#	Article	IF	CITATIONS
19	Green Synthesis of Three-Dimensional MnO ₂ /Graphene Hydrogel Composites as a High-Performance Electrode Material for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 16474-16481.	8.0	147
20	Nanopillar Arrayed Triboelectric Nanogenerator as a Self-Powered Sensitive Sensor for a Sleep Monitoring System. ACS Nano, 2016, 10, 8097-8103.	14.6	145
21	Threeâ€Dimensional Hierarchical Architectures Constructed by Graphene/MoS ₂ Nanoflake Arrays and Their Rapid Charging/Discharging Properties as Lithiumâ€Ion Battery Anodes. Chemistry - A European Journal, 2013, 19, 5818-5823.	3.3	141
22	Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable Allâ€Solidâ€State Sodiumâ€Ion Battery. Advanced Science, 2017, 4, 1700072.	11.2	140
23	Perovskite Sr0.95Ce0.05CoO3â~δloaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. Journal of Materials Chemistry, 2012, 22, 18902.	6.7	131
24	High Entropy Intermetallic–Oxide Core–Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Advanced Sustainable Systems, 2020, 4, 1900105.	5.3	129
25	Hydrothermal Synthesis and Electrochemical Properties of Li ₃ V ₂ (PO ₄) ₃ /C-Based Composites for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 3772-3776.	8.0	128
26	Inverse Spinel Cobalt–Iron Oxide and N-Doped Graphene Composite as an Efficient and Durable Bifuctional Catalyst for Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 4082-4090.	11.2	122
27	Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochemistry Communications, 2006, 8, 833-838.	4.7	118
28	Synthesis and Characterization of Polycrystalline CeO2Nanowires. Chemistry Letters, 2004, 33, 662-663.	1.3	116
29	Fe ²⁺ â€Doped Layered Double (Ni, Fe) Hydroxides as Efficient Electrocatalysts for Water Splitting and Selfâ€Powered Electrochemical Systems. Small, 2019, 15, e1902551.	10.0	114
30	Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. Chemical Communications, 2011, 47, 12852.	4.1	109
31	Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries. Electrochemistry Communications, 2013, 28, 13-16.	4.7	109
32	Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc-air battery: A case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy, 2020, 72, 104669.	16.0	108
33	Mg Doped Perovskite LaNiO ₃ Nanofibers as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 923-931.	5.1	103
34	Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction. Journal of Physics and Chemistry of Solids, 2007, 68, 1785-1790.	4.0	102
35	Porous Perovskite La _{0.6} Sr _{0.4} Co _{0.8} Mn _{0.2} O ₃ Nanofibers Loaded with RuO ₂ Nanosheets as an Efficient and Durable Bifunctional Catalyst for Rechargeable Li–O ₂ Batteries. ACS Catalysis. 2017. 7. 7737-7747.	11.2	102
36	P2-Type Na _{0.67} Ni _{0.23} Mg _{0.1} Mn _{0.67} O ₂ as a High-Performance Cathode for a Sodium-Ion Battery. Inorganic Chemistry, 2016, 55, 9033-9037.	4.0	98

#	Article	IF	CITATIONS
37	Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring. Nano Energy, 2018, 51, 721-727.	16.0	97
38	Oxygen Deficient LaMn _{0.75} Co _{0.25} O _{3â^î^} Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc–Air Batteries. Inorganic Chemistry, 2019, 58, 8208-8214.	4.0	89
39	A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Materials, 2015, 7, e153-e153.	7.9	88
40	Perovskite Sr _{1–<i>x</i>} Ce _{<i>x</i>} CoO _{3â~îî} (0.05 ≤i>x ≤0.1 Superior Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 1143-1148.	5) as 8.0	87
41	Effects of Fluorine Doping on Structural and Electrochemical Properties of Li _{6.25} Ga _{0.25} La ₃ Zr ₂ O ₁₂ as Electrolytes for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2042-2049.	8.0	85
42	Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature. Journal of Materials Chemistry, 2012, 22, 5924.	6.7	79
43	Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy, 2018, 52, 510-516.	16.0	78
44	A Safe High-Performance All-Solid-State Lithium–Vanadium Battery with a Freestanding V ₂ O ₅ Nanowire Composite Paper Cathode. ACS Applied Materials & Interfaces, 2016, 8, 34309-34316.	8.0	77
45	Flexible Quasiâ€Solidâ€State Composite Electrolyte Membrane Derived from a Metalâ€Organic Framework for Lithiumâ€Metal Batteries. ChemElectroChem, 2020, 7, 707-715.	3.4	74
46	<i>In situ</i> Raman spectroscopy of LiFePO ₄ : size and morphology dependence during charge and self-discharge. Nanotechnology, 2013, 24, 424009.	2.6	69
47	One dimensional La0.8Sr0.2Co0.2Fe0.8O3â^î/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2012, 219, 133-139.	7.8	68
48	A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Materials, 2018, 12, 17-22.	18.0	67
49	Nitrogen-Doped NiCo ₂ O ₄ Microsphere as an Efficient Catalyst for Flexible Rechargeable Zinc–Air Batteries and Self-Charging Power System. ACS Applied Energy Materials, 2019, 2, 2296-2304.	5.1	66
50	Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy, 2020, 78, 105359.	16.0	66
51	Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications. Energies, 2016, 9, 603.	3.1	64
52	Electrospinning La0.8Sr0.2Co0.2Fe0.8O3â^î^tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode. International Journal of Hydrogen Energy, 2013, 38, 6821-6829.	7.1	63
53	FeCo Nanoparticles Encapsulated in Nâ€Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. Small, 2021, 17, e2103737.	10.0	62
54	Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 1638-1645.	3.3	55

#	Article	IF	CITATIONS
55	A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries. Inorganic Chemistry Frontiers, 2021, 8, 361-367.	6.0	55
56	A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries. New Journal of Chemistry, 2020, 44, 1817-1824.	2.8	54
57	Functional Applications of Metallic Glasses in Electrocatalysis. ChemCatChem, 2019, 11, 2401-2414.	3.7	51
58	Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery. Scientific Reports, 2014, 4, 7231.	3.3	48
59	Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 46965-46972.	8.0	48
60	Electrochemical Lithium Intercalation in Monoclinic Nb ₁₂ O ₂₉ . Chemistry of Materials, 2011, 23, 2292-2294.	6.7	46
61	V ₂ O ₅ Nanowire Composite Paper as a High-Performance Lithium-Ion Battery Cathode. ACS Omega, 2017, 2, 793-799.	3.5	46
62	Durable Sodium Battery with a Flexible Na ₃ Zr ₂ Si ₂ PO ₁₂ –PVDF–HFP Composite Electrolyte and Sodium/Carbon Cloth Anode. ACS Applied Materials & Interfaces, 2018, 10, 35039-35046.	8.0	46
63	In situ diffusion growth of Fe2(MoO4)3 nanocrystals on the surface of α-MoO3 nanorods with significantly enhanced ethanol sensing properties. Journal of Materials Chemistry, 2012, 22, 12900.	6.7	45
64	Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel fuel cells. Journal of Materials Chemistry A, 2016, 4, 18031-18036.	10.3	45
65	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	5.7	45
66	Deposition, characterization and performance evaluation of ceramic coatings on metallic substrates for supercritical water-cooled reactors. Surface and Coatings Technology, 2011, 205, 3512-3519.	4.8	42
67	Controllable Synthesis of Shuttle haped Ceria and Its Catalytic Properties for CO Oxidation. European Journal of Inorganic Chemistry, 2009, 2009, 3883-3887.	2.0	41
68	Enhanced activity, durability and anti-poisoning property of Pt/W ₁₈ O ₄₉ for methanol oxidation with a sub-stoichiometric tungsten oxide W ₁₈ O ₄₉ support. Journal of Materials Chemistry A, 2014, 2, 20154-20163.	10.3	41
69	A Highâ€performance Lithium Metal Battery with a Multilayer Hybrid Electrolyte. Energy and Environmental Materials, 2023, 6, .	12.8	41
70	Feasibility and mechanism of lithium oxide as sintering aid for Ce0.8Sm0.20δ electrolyte. Journal of Power Sources, 2012, 205, 57-62.	7.8	40
71	Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. Journal of Physics and Chemistry of Solids, 2019, 135, 109080.	4.0	40
72	Detection of driving actions on steering wheel using triboelectric nanogenerator via machine learning. Nano Energy, 2021, 79, 105455.	16.0	40

#	Article	IF	CITATIONS
73	Imaging the diffusion pathway of Al ³⁺ ion in NASICON-type (Al _{0.2} Zr) Tj ETQq1 1 0. solid-state Al batteries. Chinese Physics B, 2018, 27, 128201.	784314 rgBT 1.4	- /Overlock 39
74	Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy, 2019, 56, 555-562.	16.0	39
75	Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries. Journal of Power Sources, 2021, 484, 229263.	7.8	39
76	Novel Photoanode for Dye-Sensitized Solar Cells with Enhanced Light-Harvesting and Electron-Collection Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 13418-13425.	8.0	38
77	Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 12099-12105.	8.0	38
78	An ion-conductive Li7La3Zr2O12-based composite membrane for dendrite-free lithium metal batteries. Journal of Power Sources, 2020, 450, 227710.	7.8	33
79	Triboelectric nanogenerator based self-powered sensor with a turnable sector structure for monitoring driving behavior. Nano Energy, 2021, 89, 106352.	16.0	33
80	Graphene–MoO2 hierarchical nanoarchitectures: in situ reduction synthesis and high rate cycling performance as lithium-ion battery anodes. RSC Advances, 2013, 3, 17659.	3.6	32
81	Mesoscale Organization of Flower-Like La2O2CO3and La2O3Microspheres. Journal of the American Ceramic Society, 2007, 90, 2576-2581.	3.8	31
82	Chlorine-doped Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ as an electrolyte for solid lithium metal batteries. Materials Chemistry Frontiers, 2021, 5, 5336-5343.	5.9	31
83	Direct operation of methane fueled solid oxide fuel cells with Ni cermet anode via Sn modification. International Journal of Hydrogen Energy, 2016, 41, 11391-11398.	7.1	29
84	Effects of Pulse Charging by Triboelectric Nanogenerators on the Performance of Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 28345-28350.	8.0	28
85	Ni doped La 0.6 Sr 0.4 FeO 3- δ symmetrical electrode for solid oxide fuel cells. Chinese Journal of Catalysis, 2016, 37, 1347-1353.	14.0	27
86	Multi-scale impedance model for supercapacitor porous electrodes: Theoretical prediction and experimental validation. Journal of Power Sources, 2018, 400, 69-86.	7.8	27
87	Effects of processing parameters on microstructures of TiO2 coatings formed on titanium by plasma electrolytic oxidation. Journal of Materials Science, 2010, 45, 6235-6241.	3.7	25
88	Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell. Scientific Reports, 2015, 5, 11946.	3.3	25
89	Perovskite La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃ Nanofibers Decorated with RuO ₂ Nanoparticles as an Efficient Bifunctional Cathode for Rechargeable Li–O ₂ Batteries. ChemNanoMat, 2017, 3, 485-490.	2.8	25
90	Manganeseâ€Doped Hollow Layered Double (Ni, Co) Hydroxide Microcuboids as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2020, 7, 3852-3858.	3.4	25

#	Article	IF	CITATIONS
91	High-Performance Sodium Metal Batteries with Sodium–Bismuth Alloy Anode. ACS Applied Energy Materials, 2020, 3, 12607-12612.	5.1	25
92	Insight into the Structure and Functional Application of the Sr0.95Ce0.05CoO3â^´Î´ Cathode for Solid Oxide Fuel Cells. Inorganic Chemistry, 2015, 54, 3477-3484.	4.0	24
93	A Superior Oxygen Reduction Reaction Electrocatalyst Based on Reduced Graphene Oxide and Iron(II) Phthalocyanine-Supported Sub-2 nm Platinum Nanoparticles. ACS Applied Nano Materials, 2018, 1, 711-721.	5.0	24
94	H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. International Journal of Hydrogen Energy, 2010, 35, 3087-3091.	7.1	23
95	Dynamic Octahedral Breathing in Oxygen-Deficient Ba _{0.9} Co _{0.7} Fe _{0.2} Nb _{0.1} O _{3-δ} Perovskite Performing as a Cathode in Intermediate-Temperature SOFC. Inorganic Chemistry, 2016, 55, 3091-3097.	4.0	23
96	Insight into the structure and functional application of Mg-doped Na0.5Bi0.5TiO3 electrolyte for solid oxide fuel cells. Journal of Alloys and Compounds, 2018, 752, 213-219.	5.5	23
97	Synthesis and characterization of NH4PO3 based composite with superior proton conductivity for intermediate temperature fuel cells. Electrochimica Acta, 2008, 53, 6417-6422.	5.2	22
98	Ba1â^'xPrxCo1â^'yFeyO3â^'î^ as cathode materials for low temperature solid oxide fuel cells. Electrochimica Acta, 2010, 55, 4772-4775.	5.2	22
99	Piezotronic-enhanced oxygen evolution reaction enabled by a Au/MoS ₂ nanosheet catalyst. Catalysis Science and Technology, 2020, 10, 6180-6187.	4.1	22
100	Effect of Ni doping on the catalytic properties of nanostructured peony-like CeO2. Chinese Journal of Catalysis, 2013, 34, 305-312.	14.0	21
101	Li-Water Battery with Oxygen Dissolved in Water as a Cathode. Journal of the Electrochemical Society, 2014, 161, A285-A289.	2.9	20
102	Effects of F-Doping on the Electrochemical Performance of Na2Ti3O7 as an Anode for Sodium-Ion Batteries. Materials, 2018, 11, 2206.	2.9	20
103	A Monolithic Solid-State Sodium–Sulfur Battery with Al-Doped Na _{3.4} Zr ₂ (Si _{0.8} P _{0.2} O ₄) ₃ Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 42927-42934.	8.0	20
104	MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 14411-14415.	7.1	19
105	Na ₂ Ti ₃ O ₇ Nanotubes as Anode Materials for Sodiumâ€ion Batteries and Selfâ€powered Systems. ChemElectroChem, 2019, 6, 3085-3090.	3.4	19
106	Flexible Quasi-Solid-State Sodium Battery for Storing Pulse Electricity Harvested from Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 39342-39351.	8.0	19
107	High Activity of Nanoporousâ€5m _{0.2} Ce _{0.8} O _{2â€<i>δ</i>} @430L Composites for Hydrogen Electroâ€Oxidation in Solid Oxide Fuel Cells. Advanced Energy Materials, 2014, 4, 1400883.	19.5	18
108	An efficient ultra-thin chain-structured copper cobalt oxide/sulfide composite catalyst for electrochemical hydrogen generation. RSC Advances, 2016, 6, 43185-43190.	3.6	18

#	Article	IF	CITATIONS
109	NiCoFeP Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc–Air Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000104.	5.8	18
110	Porous Urchinâ€like Co ₃ O ₄ Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous and Solidâ€State Liâ^'O ₂ Batteries. ChemElectroChem, 2018, 5, 2181-2185.	3.4	17
111	A long life solid-state lithium–oxygen battery enabled by a durable oxygen deficient flower-like CeO ₂ microsphere based solid electrolyte. Inorganic Chemistry Frontiers, 2022, 9, 2508-2516.	6.0	17
112	Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 624, 704-712.	9.4	15
113	Carbon Formation Mechanism of C2H2 in Ni-Based Catalysts Revealed by in Situ Electron Microscopy and Molecular Dynamics Simulations. ACS Omega, 2019, 4, 8413-8420.	3.5	14
114	Layered double (Ni, Fe) hydroxide grown on nickel foam and modified by nickel carbonyl powder and carbon black as an efficient electrode for water splitting. International Journal of Hydrogen Energy, 2022, 47, 19609-19618.	7.1	14
115	Pt Nanoparticles Loaded on W ₁₈ O ₄₉ Nanocables–rGO Nanocomposite as a Highly Active and Durable Catalyst for Methanol Electro-Oxidation. ACS Omega, 2018, 3, 16850-16857.	3.5	13
116	A New Oxyfluorinated Titanium Phosphate Anode for A High-Energy Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 1270-1274.	8.0	12
117	All-Solid-State Supercapacitors Based on Flexible Co3O4 Nanoflowers/rGO Nanocomposites. Journal of Electronic Materials, 2018, 47, 5987-5992.	2.2	12
118	Data-Driven Detection Methods on Driver's Pedal Action Intensity Using Triboelectric Nano-Generators. Sustainability, 2020, 12, 8926.	3.2	12
119	High performance lithium-sulfur batteries for storing pulsed energy generated by triboelectric nanogenerators. Scientific Reports, 2017, 7, 425.	3.3	11
120	Elucidating the diffusion pathway of protons in ammonium polyphosphate: a potential electrolyte for intermediate temperature fuel cells. Journal of Materials Chemistry A, 2017, 5, 7839-7844.	10.3	9
121	Performance and stability of SrCo0.9Nb0.1O3-δ-(La0.60Sr0.40)0.95(Co0.20Fe0.80)O3-δ bilayer cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2019, 414, 24-30.	7.8	8
122	Visualization of the Diffusion Pathway of Protons in (NH4)2Si0.5Ti0.5P4O13 as an Electrolyte for Intermediate-Temperature Fuel Cells. Inorganic Chemistry, 2018, 57, 676-680.	4.0	7
123	A Highâ€Performance Solid‣tate Na–CO ₂ Battery with Poly(Vinylidene) Tj ETQq1 1 0.784314 Electrolyte. Energy and Environmental Materials, 2023, 6, .	rgBT /Ove 12.8	rlock 10 Tf 5 7
124	Perovskite Sr _{0.9} Y _{0.1} CoO _{3â^'δ} Nanorods Modified with CoO Nanoparticles as a Bifunctional Catalyst for Rechargeable Li–O ₂ Batteries. ACS Applied Energy Materials, 0, , .	5.1	6
125	Li/Na Modified Ni-SDC Anode for Methane-Fueled Solid Oxide Fuel Cells. ECS Transactions, 2015, 68, 1403-1409.	0.5	5
126	Layered Double (Ni, Fe) Hydroxide Loaded with Platinum Nanoparticles as an Efficient Catalyst for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5002-5009.	5.1	5

#	Article	IF	CITATIONS
127	Electrochemical Properties of Low-Temperature Solid Oxide Fuel Cells Under Chromium Poisoning Conditions. International Journal of Green Energy, 2009, 6, 627-637.	3.8	4
128	Core-Shell Structured Sr _{0.88} Y _{0.08} TiO ₃ -Ce _{0.8} Sm _{0.2} O _{1.9} Composite as an Anode for Solid Oxide Fuel Cells Operating with CH ₄ . ECS Transactions, 2013, 57, 1313-1319.	0.5	4
129	Low Temperature Methane Steam Reforming for SOFC. ECS Transactions, 2015, 68, 2775-2782.	0.5	0
130	In situ characterization of energy materials by neutron diffraction. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C129-C129.	0.1	0