
Elina Vuorimaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4124575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. Journal of Controlled Release, 2015, 220, 727-737.	4.8	465
2	Self-Assembled Hydrophobin Protein Films at the Airâ^'Water Interface:  Structural Analysis and Molecular Engineering. Biochemistry, 2007, 46, 2345-2354.	1.2	153
3	Structural Hierarchy in Molecular Films of Two Class II Hydrophobinsâ€. Biochemistry, 2003, 42, 5253-5258.	1.2	120
4	Light induced cytosolic drug delivery from liposomes with gold nanoparticles. Journal of Controlled Release, 2015, 203, 85-98.	4.8	113
5	Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies. Langmuir, 2011, 27, 7788-7798.	1.6	95
6	The Effect and Role of Carbon Atoms in Poly(β-amino ester)s for DNA Binding and Gene Delivery. Journal of the American Chemical Society, 2013, 135, 6951-6957.	6.6	72
7	Self-Assembled Films of Hydrophobin Proteins HFBI and HFBII Studied in Situ at the Air/Water Interface. Langmuir, 2009, 25, 1612-1619.	1.6	71
8	Time-Resolved Fluorescence Spectroscopy Reveals Functional Differences of Cationic Polymerâ^'DNA Complexes. Journal of the American Chemical Society, 2008, 130, 11695-11700.	6.6	45
9	Effect of the Number of Arms on the Association of Amphiphilic Star Block Copolymers. Macromolecules, 2008, 41, 8855-8864.	2.2	44
10	Langmuirâ^'Schaeffer Films from a Ï€â^'Ï€ Stacking Perylenediimide Dye: Organization and Charge Transfer Properties. Langmuir, 2010, 26, 6630-6637.	1.6	36
11	Study of photocycle and spectral properties of bacteriorhodopsin in Langmuir-Blodgett films. Thin Solid Films, 1992, 213, 277-284.	0.8	33
12	Role of Polyplex Intermediate Species on Gene Transfer Efficiency: Polyethylenimineâ^'DNA Complexes and Time-Resolved Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 1895-1902.	1.2	33
13	Langmuir-Schaefer film deposition onto honeycomb porous films for retinal tissue engineering. Acta Biomaterialia, 2017, 54, 138-149.	4.1	32
14	Endothermic and Exothermic Energy Transfer Made Equally Efficient for Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry Letters, 2020, 11, 318-324.	2.1	30
15	Independent versus Cooperative Binding in Polyethylenimine–DNA and Poly(<scp>l</scp> -lysine)–DNA Polyplexes. Journal of Physical Chemistry B, 2013, 117, 10405-10413.	1.2	29
16	Application of isothermal and model-free isoconversional modes in DSC measurement for the curing process of the PU system. Journal of Applied Polymer Science, 2001, 81, 1474-1480.	1.3	26
17	Self-assembled structures of hydrophobins HFBI and HFBII. Journal of Applied Crystallography, 2003, 36, 499-502.	1.9	23
18	Halogen-Bond-Assisted Photoluminescence Modulation in Carbazole-Based Emitter. Scientific Reports, 2018. 8. 14431.	1.6	23

Elina Vuorimaa

#	Article	IF	CITATIONS
19	Expanding excitation wavelengths for azobenzene photoswitching into the near-infrared range <i>via</i> endothermic triplet energy transfer. Chemical Science, 2021, 12, 7504-7509.	3.7	23
20	A regression technique to analyze the second-order nonlinear optical response of thin films. Journal of Chemical Physics, 2004, 121, 1.	1.2	20
21	Spectrophotometric Study of Luminol in Dimethyl Sulfoxide–Potassium Hydroxide. Journal of Fluorescence, 2003, 13, 315-322.	1.3	19
22	Nonlinear Optical and Structural Properties of Langmuirâ^'Blodgett Films of Thiohelicenebisquinones. Journal of Physical Chemistry B, 2008, 112, 1940-1945.	1.2	19
23	Absolute Probe of Surface Chirality Based on Focused Circularly Polarized Light. Journal of Physical Chemistry Letters, 2010, 1, 1826-1829.	2.1	19
24	Poly(β-amino ester)–DNA complexes: Time-resolved fluorescence and cellular transfection studies. Journal of Controlled Release, 2011, 154, 171-176.	4.8	19
25	Langmuir–Blodgett films of hydrophobins HFBI and HFBII. Surface Science, 2005, 584, 35-40.	0.8	18
26	Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomaterialia, 2020, 101, 327-343.	4.1	18
27	Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films. Journal of Chemical Physics, 2004, 120, 9245-9252.	1.2	16
28	Self-assembled films of hydrophobin protein HFBIII from Trichoderma reesei. Journal of Applied Crystallography, 2007, 40, s355-s360.	1.9	16
29	Efficient photon upconversion at remarkably low annihilator concentrations in a liquid polymer matrix: when less is more. Chemical Communications, 2018, 54, 14029-14032.	2.2	15
30	Critical Sensitizer Quality Attributes for Efficient Triplet–Triplet Annihilation Upconversion with Low Power Density Thresholds. Journal of Physical Chemistry C, 2019, 123, 22865-22872.	1.5	14
31	Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy. Molecular Pharmaceutics, 2018, 15, 1964-1971.	2.3	13
32	The orientation of quinquethiophene in Langmuir-Blodgett films. Thin Solid Films, 1990, 190, 175-180.	0.8	12
33	Excited-state proton transfer reactions of long-chain derivatives of naphthols in solutions and Langmuir—Blodgett films. Chemical Physics Letters, 1992, 193, 128-133.	1.2	11
34	Stable blue phase polymeric Langmuir-Schaefer films based on unsymmetrical hydroxyalkadiynyl N-arylcarbamate derivatives. Thin Solid Films, 2018, 645, 108-118.	0.8	11
35	Deciphering Multiple Critical Parameters of Polymeric Self-Assembly by Fluorescence Spectroscopy of a Single Molecular Rotor BODIPY-C12. Macromolecules, 2021, 54, 655-664.	2.2	9
36	Controlled Monofunctionalization of Molecular Spherical Nucleic Acids on a Buckminster Fullerene Core. Bioconjugate Chemistry, 2021, 32, 1130-1138.	1.8	9

Elina Vuorimaa

#	Article	IF	CITATIONS
37	Head-to-tail organization of terthiophene–vinylbenzoate in Langmuir–Blodgett films. Chemical Physics Letters, 2003, 377, 306-310.	1.2	8
38	The red, purple and blue modifications of polymeric unsymmetrical hydroxyalkadiynyl-N-arylcarbamate derivatives in Langmuir-Schaefer films. Thin Solid Films, 2016, 612, 463-471.	0.8	8
39	Difference in the core-shell dynamics of polyethyleneimine and poly(l -lysine) DNA polyplexes. European Journal of Pharmaceutical Sciences, 2017, 103, 122-127.	1.9	8
40	Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay. Food Chemistry, 2020, 318, 126511.	4.2	8
41	Addressing challenges in the removal of unbound dye from passively labelled extracellular vesicles. Nanoscale Advances, 2021, 4, 226-240.	2.2	7
42	Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules, 2020, 21, 73-88.	2.6	5
43	Assembly of Bleomycin Saccharide-Decorated Spherical Nucleic Acids. Bioconjugate Chemistry, 2022, 33, 206-218.	1.8	5
44	Time-Resolved Fluorescence Spectroscopy Reveals Fine Structure and Dynamics of Poly(<scp>l</scp> -lysine) and Polyethylenimine Based DNA Polyplexes. Journal of Physical Chemistry B, 2017, 121, 10782-10792.	1.2	4
45	Linear optics in the second-order characterization of thin films. Chemical Physics Letters, 2006, 419, 492-495.	1.2	3
46	Effect of the deposition type on the structure of terthiophene-vinylbenzoate Langmuir–Blodgett films. Thin Solid Films, 2008, 516, 7764-7769.	0.8	1
47	Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. , 2015, 220, 727-727.		1
48	Distinguishing between low symmetries when determining the nonlinearity of chiral thin films. , 2005, 5935, 96.		0
49	<title>Linear optics in the second-order characterization of thin films</title> ., 2006, 6259, 147.		0
50	Importance of linear optics in the second-order characterization of molecular monolayers. , 2006, , .		0