
Yasuaki Kimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4124017/publications.pdf Version: 2024-02-01

VASUARI KIMIIDA

#	Article	IF	CITATIONS
1	Development of Fluorophosphoramidate as a Biocompatibly Transformable Functional Group and its Application as a Phosphate Prodrug for Nucleoside Analogs. ChemMedChem, 2022, 17, .	3.2	0
2	Complete Chemical Synthesis of Minimal Messenger RNA by Efficient Chemical Capping Reaction. ACS Chemical Biology, 2022, 17, 1308-1314.	3.4	10
3	Structure, Synthesis and Inhibition Mechanism of Nucleoside Analogues as HIVâ€l Reverse Transcriptase Inhibitors (NRTIs). ChemMedChem, 2021, 16, 743-766.	3.2	11
4	Completely Chemically Synthesized Long DNA Can be Transcribed in Human Cells. ChemBioChem, 2021, 22, 3273-3276.	2.6	1
5	Antisense Oligonucleotide Modified with Disulfide Units Induces Efficient Exon Skipping in <i>mdx</i> Myotubes through Enhanced Membrane Permeability and Nucleus Internalization. ChemBioChem, 2021, 22, 3437-3442.	2.6	6
6	Translational control by secondary-structure formation in mRNA in a eukaryotic system. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 195-203.	1.1	3
7	A robust model for quantitative prediction of the silencing efficacy of wild-type and A-to-I edited miRNAs. RNA Biology, 2020, 17, 264-280.	3.1	1
8	Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chemical Communications, 2020, 56, 466-469.	4.1	18
9	Free-Energy Calculation of Ribonucleic Inosines and Its Application to Nearest-Neighbor Parameters. Journal of Chemical Theory and Computation, 2020, 16, 5923-5935.	5.3	5
10	Quantification of native mRNA dynamics in living neurons using fluorescence correlation spectroscopy and reduction-triggered fluorescent probes. Journal of Biological Chemistry, 2020, 295, 7923-7940.	3.4	3
11	Phosphorothioate Modification of mRNA Accelerates the Rate of Translation Initiation to Provide More Efficient Protein Synthesis. Angewandte Chemie - International Edition, 2020, 59, 17403-17407.	13.8	32
12	Phosphorothioate Modification of mRNA Accelerates the Rate of Translation Initiation to Provide More Efficient Protein Synthesis. Angewandte Chemie, 2020, 132, 17556-17560.	2.0	4
13	Intracellular Delivery of Antisense DNA and siRNA with Amino Groups Masked with Disulfide Units. Chemical and Pharmaceutical Bulletin, 2020, 68, 129-132.	1.3	5
14	Chemically synthesized circular RNAs with phosphoramidate linkages enable rolling circle translation. Chemical Communications, 2020, 56, 6217-6220.	4.1	15
15	Synthesis and Biological Evaluation of NMDI14 Derivatives as Anti-Mesothelioma Agents. Heterocycles, 2020, 100, 253.	0.7	1
16	<i>N</i> ⁶ -methyl adenosine in siRNA evades immune response without reducing RNAi activity. Nucleosides, Nucleotides and Nucleic Acids, 2019, 38, 972-979.	1.1	12
17	Disulfideâ€Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA. Angewandte Chemie, 2019, 131, 6683-6687.	2.0	15
18	Disulfideâ€Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA. Angewandte Chemie - International Edition, 2019, 58, 6611-6615.	13.8	70

YASUAKI KIMURA

#	Article	IF	CITATION
19	A Covalent Inhibitor for Glutathione <i>S</i> â€Transferase Pi (GSTP _{1â€1}) in Human Cells. ChemBioChem, 2019, 20, 900-905.	2.6	20
20	Chemical Ligation Reactions of Oligonucleotides for Biological and Medicinal Applications. Chemical and Pharmaceutical Bulletin, 2018, 66, 117-122.	1.3	3
21	Chemical ligation of oligonucleotides using an electrophilic phosphorothioester. Nucleic Acids Research, 2017, 45, 7042-7048.	14.5	12
22	A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP ₁₋₁). Chemical Communications, 2017, 53, 11138-11141.	4.1	43
23	Supramolecular Ligands for Histone Tails by Employing a Multivalent Display of Trisulfonated Calix[4]arenes. ChemBioChem, 2015, 16, 2599-2604.	2.6	15
24	Inhibition of MAO ―A and stimulation of behavioural activities in mice by the inactive prodrug form of the antiâ€influenza agent oseltamivir. British Journal of Pharmacology, 2013, 169, 115-129.	5.4	22
25	Catalytic Anomeric Aminoalkynylation of Unprotected Aldoses. Organic Letters, 2013, 15, 4130-4133.	4.6	27
26	Design and Synthesis of Resin-Conjugated Tamiflu Analogs for Affinity Chromatography. Bulletin of the Korean Chemical Society, 2010, 31, 588-594.	1.9	2
27	A Synthesis of Tamiflu by Using a Barium atalyzed Asymmetric Diels–Alderâ€Type Reaction. Angewandte Chemie - International Edition, 2009, 48, 1070-1076.	13.8	114
28	Design and synthesis of immobilized Tamiflu analog on resin for affinity chromatography. Tetrahedron Letters, 2009, 50, 3205-3208.	1.4	15
29	Two Methods for Catalytic Generation of Reactive Enolates Promoted by a Chiral Poly Gd Complex: Application to Catalytic Enantioselective Protonation Reactions. Journal of the American Chemical Society, 2009, 131, 3858-3859.	13.7	51