Franca Giannini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4123559/publications.pdf

Version: 2024-02-01

471061 552369 81 879 17 26 citations h-index g-index papers 85 85 85 468 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Automatic recognition and representation of shape-based features in a geometric modeling system. Computer Vision, Graphics, and Image Processing, 1989, 48, 93-123.	1.1	72
2	A Free Form Feature Taxonomy. Computer Graphics Forum, 1999, 18, 107-118.	1.8	62
3	Software environment for CAD/CAE integration. Advances in Engineering Software, 2010, 41, 1211-1222.	1.8	55
4	Incorporating free-form features in aesthetic and engineering product design: State-of-the-art report. Computers in Industry, 2008, 59, 626-637.	5.7	44
5	A modelling tool for the management of product data in a co-design environment. CAD Computer Aided Design, 2002, 34, 1063-1073.	1.4	42
6	3D sketching for aesthetic design using fully free-form deformation features. Computers and Graphics, 2005, 29, 916-930.	1.4	34
7	Content-based CAD assembly model retrieval: Survey and future challenges. CAD Computer Aided Design, 2019, 113, 62-81.	1.4	34
8	Aesthetic-driven tools for industrial design. Journal of Engineering Design, 2006, 17, 193-215.	1.1	28
9	A Survey of Computer-Aided Modeling Tools for Aesthetic Design. Journal of Computing and Information Science in Engineering, 2002, 2, 11-20.	1.7	26
10	Fully free-form deformation features for aesthetic shape design. Journal of Engineering Design, 2005, 16, 115-133.	1.1	24
11	FREE FORM FEATURES FOR AESTHETIC DESIGN. International Journal of Shape Modeling, 2000, 06, 273-302.	0.3	22
12	A framework for the automatic annotation of car aesthetics. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2007, 21, 73-90.	0.7	22
13	Exploiting process plant digital representation for risk analysis. Journal of Loss Prevention in the Process Industries, 2007, 20, 69-78.	1.7	20
14	A posteriori evaluation of simplification details for finite element model preparation. Computers and Structures, 2009, 87, 73-80.	2.4	20
15	Automatic Extraction of Assembly Component Relationships for Assembly Model Retrieval. Procedia CIRP, 2016, 50, 472-477.	1.0	19
16	SHREC 2021: Skeleton-based hand gesture recognition in the wild. Computers and Graphics, 2021, 99, 201-211.	1.4	19
17	3D Dynamic Hand Gestures Recognition Using the Leap Motion Sensor and Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 420-439.	1.0	18
18	Shape Tuning in Fully Free-Form Deformation Features. Journal of Computing and Information Science in Engineering, 2005, 5, 95-103.	1.7	16

#	Article	IF	CITATIONS
19	Multi-criteria retrieval of CAD assembly models. Journal of Computational Design and Engineering, 2018, 5, 41-53.	1.5	16
20	A methodology for part classification with supervised machine learning. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2019, 33, 100-113.	0.7	16
21	Preserving car stylists' design intent through an ontology. International Journal on Interactive Design and Manufacturing, 2008, 2, 9-16.	1.3	15
22	A Semantic Framework for Sustainable Factories. Procedia CIRP, 2014, 17, 547-552.	1.0	15
23	Semantic-based operators to support car sketching. Journal of Engineering Design, 2007, 18, 395-411.	1.1	12
24	An Ontology-based Framework for Sustainable Factories. Computer-Aided Design and Applications, 2015, 12, 198-207.	0.4	12
25	Regular patterns of repeated elements in CAD assembly model retrieval. Computer-Aided Design and Applications, 2017, 14, 516-525.	0.4	12
26	Content-based multi-criteria similarity assessment of CAD assembly models. Computers in Industry, 2019, 112, 103111.	5.7	12
27	Zero-point fixture systems as a reconfiguration enabler in flexible manufacturing systems. Computer-Aided Design and Applications, 2016, 13, 684-692.	0.4	10
28	A uniform approach to represent features in different application contexts. Computers in Industry, 1992, 19, 175-184.	5.7	9
29	Using CAD Models and Their Semantics to Prepare F.E. Simulations. , 2005, , 129.		9
30	Deriving Functionality from 3D Shapes: Ontology Driven Annotation and Retrieval. Computer-Aided Design and Applications, 2007, 4, 773-782.	0.4	9
31	Identification of Similar and Complementary Subparts in B-Rep Mechanical Models. Journal of Computing and Information Science in Engineering, 2017, 17, .	1.7	9
32	SFINGE 3D: A novel benchmark for online detection and recognition of heterogeneous hand gestures from 3D fingers' trajectories. Computers and Graphics, 2020, 91, 232-242.	1.4	9
33	Simulated annealing-based fitting of CAD models to point clouds of mechanical parts' assemblies. Engineering With Computers, 2021, 37, 2891-2909.	3.5	9
34	Styling Properties and Features in Computer Aided Industrial Design. Computer-Aided Design and Applications, 2004, 1, 321-330.	0.4	8
35	Extracting 3D shape models and related life knowledge from paper-based sketches. International Journal of Computer Applications in Technology, 2005, 23, 120.	0.3	6
36	A Knowledge-based Tool for Risk Prevention on Pressure Equipments. Computer-Aided Design and Applications, 2006, 3, 99-108.	0.4	6

#	Article	IF	Citations
37	Ontology driven certification of pressure equipments. Process Safety Progress, 2008, 27, 313-322.	0.4	6
38	From CAD Models to F.E. Simulations Through a Feature-Based Approach. , 2004, , 377.		5
39	Semantic Evaluation and Deformation of Curves Based on Aesthetic Criteria. Computer-Aided Design and Applications, 2011, 8, 449-464.	0.4	5
40	Thin part identification for CAD model classification. Engineering Computations, 2015, 32, 62-85.	0.7	5
41	Design and Inspection of Multi-fixturing Pallets for Mixed Part Types. Procedia CIRP, 2015, 36, 159-164.	1.0	5
42	Configuration and inspection of multi-fixturing pallets in flexible manufacturing systems. Robotics and Computer-Integrated Manufacturing, 2018, 52, 65-75.	6.1	5
43	Exploiting Modular Pallet Flexibility for Product and Process Co-evolution Through Zero-Point Clamping Systems., 2019,, 57-82.		5
44	A Survey of Immersive Systems for Shape Manipulation. Computer-Aided Design and Applications, 2019, 16, 1146-1157.	0.4	5
45	Context dependent semantic granularity. International Journal of Data Mining, Modelling and Management, 2011, 3, 189.	0.1	4
46	The VISIONAIR Infrastructure Capabilities to Support Research. Computer-Aided Design and Applications, 2013, 10, 851-862.	0.4	4
47	CAD3A: A Web-Based Application to Visualize and Semantically Enhance CAD Assembly Models. , 2019, , .		4
48	A New Approach to Minimisations for Shape Control During Free-Form Surface Deformation. , 2003, , .		4
49	Semantic Granularity for the Semantic Web. Lecture Notes in Computer Science, 2006, , 1863-1872.	1.0	4
50	A product data manager supporting a new co-design methodology for SMEs. International Journal of Computer Applications in Technology, 2003, 18, 174.	0.3	3
51	Understanding the relationships between aesthetic properties and geometric quantities of free-form surfaces using machine learning techniques. International Journal on Interactive Design and Manufacturing, 2020, 14, 451-465.	1.3	3
52	A heuristic approach to detect CAD assembly clusters. Procedia CIRP, 2021, 100, 463-468.	1.0	3
53	Review on the Leveraging of Design Information in 3D CAD Models for Subassemblies Identification. Computer-Aided Design and Applications, 2021, 18, 1247-1264.	0.4	3
54	An Analysis of Product Development Process Configurations Where an a Posteriori FE Criterion Improves Simulation Models Consistency., 2006,,.		3

#	Article	IF	Citations
55	Fully Free-Form Deformation Features (δ-F4) Incorporating Discontinuities., 2004,, 351.		2
56	DIRECT MODIFICATION OF SEMANTICALLY-ENRICHED FINITE ELEMENT MESHES. International Journal of Shape Modeling, 2010, 16, 81-108.	0.3	2
57	A Survey to Evaluate how non Designers Perceive Aesthetic Properties of Styling Features. Computer-Aided Design and Applications, 2013, 10, 129-138.	0.4	2
58	Curve-based image editing for product styling. Computer-Aided Design and Applications, 2018, 15, 367-377.	0.4	2
59	Car model reconstruction from images through character line recognition. Engineering Computations, 2018, 35, 1873-1906.	0.7	2
60	An Ontology for the Identification of the most Appropriate Risk Management Methodology. Lecture Notes in Computer Science, 2012, , 444-453.	1.0	2
61	Regular Patterns of Repeated Elements in CAD Assembly Model Retrieval. , 0, , .		2
62	Method, Models and Tools for CAD-CAE Integration. Recent Patents on Mechanical Engineering, 2010, 3, 106-130.	0.2	2
63	CAD Assembly Retrieval and Browsing. IFIP Advances in Information and Communication Technology, 2017, , 499-508.	0.5	2
64	Exploring the Benefits of the Virtual Reality Technologies for Assembly Retrieval Applications. Lecture Notes in Computer Science, 2019, , 43-59.	1.0	2
65	Enhancing Product Semantics Understanding Through Automatic Part Type Recognition in CAD Assembly Models. Computer-Aided Design and Applications, 2022, 19, 896-912.	0.4	2
66	GEOMETRIC REASONING AS A TOOL FOR INTEGRATING DESIGN AND PRODUCTION ACTIVITIES IN MECHANICAL ENVIRONMENT. International Journal of Shape Modeling, 1996, 02, 117-137.	0.3	1
67	Filleting sharp edges of multi-partitioned volume finite element meshes. Engineering Computations, 2015, 32, 129-154.	0.7	1
68	A web repository to describe and execute shape oriented workflows. Computer-Aided Design and Applications, 2016, 13, 637-646.	0.4	1
69	Reusing heterogeneous data for the conceptual design of shapes in virtual environments. Virtual Reality, 2017, 21, 127-144.	4.1	1
70	Identification of Functional Components in Mechanical Assemblies. Procedia CIRP, 2017, 60, 542-547.	1.0	1
71	Semantic Operators for Handling Shape Sub-Domains in FE Model Preparation. , 2007, , .		1
72	Special Issue on Shape and Solid Modeling in Product Development. Journal of Computing and Information Science in Engineering, 2005, 5, 77-78.	1.7	0

#	Article	IF	Citations
73	Semantic-Preserving Mesh Direct Drilling. , 2010, , .		0
74	A Web-Based Solution Supporting CAD Assembly Model Exploration and Analysis. SN Computer Science, 2022, 3, 1.	2.3	0
75	Shape Processing and Reasoning for Multiple Product Views: Key Issues and Contributions to a General Framework. , 2008, , .		0
76	Identification of Form Features in Non-Manifold Shapes Through a Decomposition Approach. , 2008, , .		0
77	Method, Models and Tools for CAD-CAE Integration. Recent Patents on Mechanical Engineering, 2010, 3, 106-130.	0.2	0
78	Shape Feature Decomposition of Regularized Objects. , 1992, , 481-494.		0
79	Form Features Recognition in a Multi-Level Representation Context. , 1992, , 559-576.		0
80	Identification of Subassemblies by Leveraging Design Information in 3D Models. , 0, , .		0
81	Case-based tuning of a metaheuristic algorithm exploiting sensitivity analysis and design of experiments for reverse engineering applications. Engineering With Computers, 0, , 1.	3.5	O