

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4123022/publications.pdf Version: 2024-02-01

	29994	53109
10,839	54	85
citations	h-index	g-index
325	325	6537
docs citations	times ranked	citing authors
	citations 325	10,839 54 citations h-index 325 325

Βιλο Υμ

#	Article	IF	CITATIONS
1	Recent Advances in the Chemical Synthesis of <i>C</i> -Glycosides. Chemical Reviews, 2017, 117, 12281-12356.	23.0	398
2	Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Letters, 2001, 42, 2405-2407.	0.7	320
3	An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuOTf. Tetrahedron Letters, 2008, 49, 3604-3608.	0.7	288
4	Gold(I)-Catalyzed Glycosylation with Glycosyl <i>o</i> -Alkynylbenzoates as Donors. Accounts of Chemical Research, 2018, 51, 507-516.	7.6	219
5	Gold(I) atalyzed Glycosylation with Glycosyl <i>ortho</i> â€Alkynylbenzoates as Donors: General Scope and Application in the Synthesis of a Cyclic Triterpene Saponin. Chemistry - A European Journal, 2010, 16, 1871-1882.	1.7	206
6	Thioglycosides in Carbohydrate Research. Carbohydrate Research, 2015, 403, 13-22.	1.1	186
7	Glycosylation with glycosyl N-phenyltrifluoroacetimidates (PTFAI) and a perspective of the future development of new glycosylation methods. Chemical Communications, 2010, 46, 4668.	2.2	174
8	Assembly of Naturally Occurring Glycosides, Evolved Tactics, and Glycosylation Methods. Accounts of Chemical Research, 2012, 45, 1227-1236.	7.6	163
9	O-Glycosylation methods in the total synthesis of complex natural glycosides. Natural Product Reports, 2015, 32, 1331-1355.	5.2	158
10	Mechanistic Insights into the Gold(I)-Catalyzed Activation of Glycosyl <i>ortho</i> -Alkynylbenzoates for Glycosidation. Journal of the American Chemical Society, 2013, 135, 18396-18405.	6.6	153
11	Effects of polyphyllin D, a steroidal saponin in <i>Paris Polyphylla</i> , in growth inhibition of human breast cancer cells and in xenograft. Cancer Biology and Therapy, 2005, 4, 1248-1254.	1.5	152
12	First Total Synthesis of an Exceptionally Potent Antitumor Saponin, OSW-1. Journal of Organic Chemistry, 1999, 64, 202-208.	1.7	141
13	Polyphyllin D is a potent apoptosis inducer in drug-resistant HepG2 cells. Cancer Letters, 2005, 217, 203-211.	3.2	139
14	An Efficient Approach to the Synthesis of Nucleosides: Gold(I) atalyzed Nâ€Glycosylation of Pyrimidines and Purines with Glycosyl <i>ortho</i> â€Alkynyl Benzoates. Angewandte Chemie - International Edition, 2011, 50, 4933-4936.	7.2	138
15	Characterization of the Isochromenâ€4â€ylâ€gold(I) Intermediate in the Gold(I) atalyzed Glycosidation of Glycosyl <i>ortho</i> â€Alkynylbenzoates and Enhancement of the Catalytic Efficiency Thereof. Angewandte Chemie - International Edition, 2011, 50, 8329-8332.	7.2	132
16	Glycosyl Trifluoroacetimidates. 2. Synthesis of Dioscin and Xiebai Saponin I. Journal of Organic Chemistry, 2002, 67, 9099-9102.	1.7	116
17	Exploration of the correlation between the structure, hemolytic activity, and cytotoxicity of steroid saponins. Bioorganic and Medicinal Chemistry, 2007, 15, 2528-2532.	1.4	116
18	Total Synthesis and Structural Revision of TMG-chitotriomycin, a Specific Inhibitor of Insect and Fungal β- <i>N</i> -Acetylglucosaminidases. Journal of the American Chemical Society, 2009, 131, 12076-12077.	6.6	111

#	Article	IF	CITATIONS
19	Resveratrol glucuronides as the metabolites of resveratrol in humans: Characterization, synthesis, and anti-HIV activity. Journal of Pharmaceutical Sciences, 2004, 93, 2448-2457.	1.6	105
20	Efficient Sialylation with Phenyltrifluoroacetimidates as Leaving Groups. Organic Letters, 2003, 5, 3827-3830.	2.4	97
21	Total Synthesis of Landomycin A, a Potent Antitumor Angucycline Antibiotic. Journal of the American Chemical Society, 2011, 133, 12433-12435.	6.6	97
22	Kinetic Analysis of an Efficient DNA-Dependent TNA Polymerase. Journal of the American Chemical Society, 2005, 127, 7427-7434.	6.6	93
23	An in Vitro Selection System for TNA. Journal of the American Chemical Society, 2005, 127, 2802-2803.	6.6	93
24	First Synthesis of a Bidesmosidic Triterpene Saponin by a Highly Efficient Procedure. Journal of the American Chemical Society, 1999, 121, 12196-12197.	6.6	88
25	Facile Synthesis of Flavonoid 7-O-Glycosides. Journal of Organic Chemistry, 2003, 68, 6842-6845.	1.7	88
26	Carbohydrate Chemistry in the Total Synthesis of Saponins. European Journal of Organic Chemistry, 2007, 2007, 5145-5161.	1.2	88
27	Highly Stereoselective βâ€Mannopyranosylation via the 1â€Î±â€Glycosyloxyâ€isochromenyliumâ€4â€gold(I) Intermediates. Chemistry - A European Journal, 2015, 21, 8771-8780.	1.7	88
28	Polyphyllin D induces apoptosis in human erythrocytes through Ca2+ rise and membrane permeabilization. Archives of Toxicology, 2012, 86, 741-752.	1.9	83
29	Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chemical Society Reviews, 2018, 47, 7954-7984.	18.7	80
30	A Modular Approach to the Total Synthesis of Tunicamycins. Angewandte Chemie - International Edition, 2015, 54, 6618-6621.	7.2	78
31	Highly Efficient Glycosylation of Sapogenins. Journal of Organic Chemistry, 1999, 64, 7265-7266.	1.7	77
32	Synthesis of three diosgenyl saponins: dioscin, polyphyllin D, and balanitin 7. Carbohydrate Research, 1999, 317, 53-62.	1.1	74
33	Total Synthesis of Tricolorin A. Journal of Organic Chemistry, 1997, 62, 8400-8405.	1.7	73
34	Identification of 3,6-di-O-acetyl-1,2,4-O-orthoacetyl-α-d-glucopyranose as a direct evidence for the 4-O-acyl group participation in glycosylation. Chemical Communications, 2011, 47, 7515.	2.2	72
35	Total Synthesis of Nucleoside Antibiotic A201A. Journal of the American Chemical Society, 2014, 136, 4157-4160.	6.6	72
36	Polyphyllin D induces mitochondrial fragmentation and acts directly on the mitochondria to induce apoptosis in drug-resistant HepG2 cells. Cancer Letters, 2008, 261, 158-164.	3.2	71

#	Article	IF	CITATIONS
37	Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nature Communications, 2020, 11, 4142.	5.8	70
38	Triptolide: reflections on two decades of research and prospects for the future. Natural Product Reports, 2021, 38, 843-860.	5.2	70
39	An improved synthesis of the saponin, polyphyllin D. Carbohydrate Research, 2001, 331, 1-7.	1.1	68
40	Carbohydrate-based drugs launched during 2000â^'2021. Acta Pharmaceutica Sinica B, 2022, 12, 3783-3821.	5.7	68
41	Chemical Synthesis of Saponins. Advances in Carbohydrate Chemistry and Biochemistry, 2014, 71, 137-226.	0.4	67
42	Naturally Occurring Dimers from Chemical Perspective. Chemistry and Biodiversity, 2010, 7, 2660-2691.	1.0	63
43	Synthesis of Kaempferol 3- <i>O</i> -(3′′,6′′-Di- <i>O</i> - <i>E</i> - <i>p</i> -coumaroyl)-β- <scp>d</scp> -glucopyranoside, Efficier Glycosylation of Flavonol 3-OH with Glycosyl <i>o</i> -Alkynylbenzoates as Donors. Journal of Organic Chemistry, 2010, 75, 6879-6888.	1t 1.7	63
44	Recent advances in the synthesis of chitooligosaccharides and congeners. Tetrahedron, 2014, 70, 1023-1046.	1.0	63
45	Current Synthesis of Triterpene Saponins. Chemistry - an Asian Journal, 2009, 4, 642-654.	1.7	62
46	Polyphyllin D, a steroidal saponin from Paris polyphylla, inhibits endothelial cell functions in vitro and angiogenesis in zebrafish embryos in vivo. Journal of Ethnopharmacology, 2011, 137, 64-69.	2.0	62
47	Synthesis of a group of diosgenyl saponins with combined use of glycosyl trichloroacetimidate and thioglycoside donors. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1445-1453.	1.3	61
48	Efficient Synthesis of the Hexasaccharide Fragment of Landomycin A:  Using Phenyl 2,3-O-Thionocarbonyl-1-thioglycosides as 2-Deoxy-β-glycoside Precursors. Organic Letters, 2002, 4, 1919-1922.	2.4	60
49	Total synthesis of periploside A, a unique pregnane hexasaccharide with potent immunosuppressive effects. Nature Communications, 2015, 6, 5879.	5.8	59
50	One-Pot Glycosylation (OPG) for the Chemical Synthesis of Oligosaccharides. Current Organic Chemistry, 2005, 9, 179-194.	0.9	58
51	Iridoids from the Rhizomes and Roots ofValerianajatamansi. Journal of Natural Products, 2002, 65, 1949-1952.	1.5	57
52	Triterpenoids from Sanguisorba officinalis. Phytochemistry, 2005, 66, 1671-1679.	1.4	57
53	Total Synthesis of Lobatoside E, A Potent Antitumor Cyclic Triterpene Saponin. Journal of the American Chemical Society, 2008, 130, 5872-5873.	6.6	57
54	Assembly of Digitoxin by Gold(I)-Catalyzed Glycosidation of Glycosyl <i>o</i> -Alkynylbenzoates. Journal of Organic Chemistry, 2011, 76, 9748-9756.	1.7	57

#	Article	IF	CITATIONS
55	Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation. Angewandte Chemie - International Edition, 2016, 55, 12035-12039.	7.2	57
56	Synthetic access toward the diverse ginsenosides. Chemical Science, 2013, 4, 3899.	3.7	56
57	23-Oxa-Analogues of OSW-1: Efficient Synthesis and Extremely Potent Antitumor Activity. Angewandte Chemie - International Edition, 2004, 43, 4324-4327.	7.2	55
58	Two new flavonol glycosides from Gymnema sylvestre and Euphorbia ebracteolata. Carbohydrate Research, 2004, 339, 891-895.	1.1	55
59	Chemical synthesis of marine saponins. Natural Product Reports, 2019, 36, 769-787.	5.2	55
60	OSW Saponins:Â Facile Synthesis toward a New Type of Structures with Potent Antitumor Activities. Journal of Organic Chemistry, 2005, 70, 10354-10367.	1.7	54
61	Total Synthesis of the Antiallergic Naphtho-α-pyrone Tetraglucoside, Cassiaside C2, Isolated from Cassia Seeds. Journal of Organic Chemistry, 2003, 68, 6309-6313.	1.7	52
62	Gold(I)-Catalyzed Glycosidation of 1,2-Anhydrosugars. Journal of Organic Chemistry, 2008, 73, 4323-4325.	1.7	52
63	Apoptosis Induced by a New Member of Saponin Family Is Mediated through Caspase-8-Dependent Cleavage of Bcl-2. Molecular Pharmacology, 2005, 68, 1831-1838.	1.0	51
64	A dramatic concentration effect on the stereoselectivity of N-glycosylation for the synthesis of 2′-deoxy-β-ribonucleosides. Chemical Communications, 2012, 48, 7097.	2.2	51
65	Rearrangement of sugar 1,2-orthoesters to glycosidic products: a mechanistic implication. Carbohydrate Research, 2000, 329, 879-884.	1.1	49
66	Synthesis of Mangiferin, Isomangiferin, and Homomangiferin. Journal of Organic Chemistry, 2010, 75, 5725-5728.	1.7	49
67	A Recyclable Polystyreneâ€6upported Gold(I) Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 1903-1907.	2.1	49
68	ortho-(Methyltosylaminoethynyl)benzyl glycosides as new glycosyl donors for latent-active glycosylation. Chemical Communications, 2015, 51, 13957-13960.	2.2	49
69	Synthetic Homogeneous Glycoforms of the SARSâ€CoVâ€2 Spike Receptorâ€Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angewandte Chemie - International Edition, 2021, 60, 12904-12910.	7.2	49
70	Synthesis of monomethylated dioscin derivatives and their antitumor activities. Carbohydrate Research, 2003, 338, 117-121.	1.1	48
71	Synthesis of OSW-1 analogs with modified side chains and their antitumor activities. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2781-2785.	1.0	47
72	Synthesis of a typical N-acetylglucosamine-containing saponin, oleanolic acid 3-yl α-l-arabinopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→6)-2-acetamido-2-deoxy-β-d-glucopyranoside. Carbohydra Research, 2003, 338, 827-833.	te1.1	46

#	Article	IF	CITATIONS
73	Two New Flavone Glycosides fromValeriana Jatamansi. Journal of Asian Natural Products Research, 2003, 5, 257-261.	0.7	46
74	Glycosylation with 3,5-Dimethyl-4-(2′-phenylethynylphenyl)phenyl (EPP) Glycosides via a Dearomative Activation Mechanism. Journal of the American Chemical Society, 2019, 141, 4806-4810.	6.6	46
75	Discovery and Development of Thiazolo[3,2â€ <i>a</i>]pyrimidinone Derivatives as General Inhibitors of Bclâ€2 Family Proteins. ChemMedChem, 2011, 6, 904-921.	1.6	44
76	Synthesis of diosgenyl α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→3)]-β-d-glucopyranoside (gracillin) and related saponins. Carbohydrate Research, 1998, 306, 189-195.	1.1	43
77	Synthesis of glycosides bearing the disaccharide of OSW-1 or its 1→4-linked analogue and their antitumor activities. Carbohydrate Research, 2000, 329, 495-505.	1.1	43
78	Synthesis of quercetin 3-O-(2′′-galloyl)-α-l-arabinopyranoside. Tetrahedron Letters, 2002, 43, 9467-9470.	0.7	43
79	Total Synthesis of CRM646-A and -B, Two Fungal Glucuronides with Potent Heparinase Inhibition Activities. Journal of Organic Chemistry, 2005, 70, 8884-8889.	1.7	43
80	Efficient Synthesis of Lupane-Type Saponins via Gold(I)-Catalyzed Glycosylation with Glycosyl <i>ortho</i> -Alkynylbenzoates as Donors. Organic Letters, 2011, 13, 5508-5511.	2.4	43
81	Synthesis, Evaluation, and Mechanism of <i>N</i> , <i>N</i> , <i>N<td>tiye 1.3</td><td>42</td></i>	tiye 1.3	42
82	Identification of (phosphine)gold(i) hydrates and their equilibria in wet solutions. RSC Advances, 2012, 2, 12686.	1.7	42
83	Synthesis of the Diverse Glycosides in Traditional Chinese Medicine. Chinese Journal of Chemistry, 2018, 36, 681-691.	2.6	42
84	Five New Ocotillone-Type Saponins fromGynostemmapentaphyllum. Journal of Natural Products, 2004, 67, 1147-1151.	1.5	41
85	Cholestane and spirostane glycosides from the rhizomes of Dioscorea septemloba. Phytochemistry, 2008, 69, 1411-1418.	1.4	41
86	Revisit of the phenol O-glycosylation with glycosyl imidates, BF3·OEt2 is a better catalyst than TMSOTf. Carbohydrate Research, 2012, 363, 14-22.	1.1	41
87	Total Synthesis of Linckosides A and B, the Representative Starfish Polyhydroxysteroid Glycosides with Neuritogenic Activities. Journal of the American Chemical Society, 2015, 137, 15098-15101.	6.6	41
88	Inhibition of cancer stem cell like cells by a synthetic retinoid. Nature Communications, 2018, 9, 1406.	5.8	40
89	Synthesis of bradyrhizose, a unique inositol-fused monosaccharide relevant to a Nod-factor independent nitrogen fixation. Chemical Communications, 2015, 51, 6964-6967.	2.2	39
90	Synthesis of OSW-1 analogues and a dimer and their antitumor activities. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2153-2156.	1.0	38

#	Article	IF	CITATIONS
91	Synthesis of OSW saponin analogs with modified sugar residues and their antiproliferative activities. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1003-1007.	1.0	38
92	Synthesis of a tetrasaccharide substrate of heparanase. Carbohydrate Research, 2008, 343, 2853-2862.	1.1	38
93	Total Synthesis of Starfish Saponin Goniopectenosideâ€B. Chemistry - A European Journal, 2013, 19, 7708-7712.	1.7	38
94	Stereoselective Synthesis of 2-S-Phenyl-2-deoxy-β-glycosides Using Phenyl 2,3-O-Thionocarbonyl-1-thioglycoside Donors via 1,2-Migration and Concurrent Glycosidation. Organic Letters, 2001, 3, 377-379.	2.4	37
95	Stereoselective synthesis of β-rhamnopyranosides via gold(i)-catalyzed glycosylation with 2-alkynyl-4-nitro-benzoate donors. Organic and Biomolecular Chemistry, 2016, 14, 1536-1539.	1.5	37
96	The First Total Synthesis of Tricolorin A. Angewandte Chemie International Edition in English, 1997, 36, 2344-2346.	4.4	36
97	A facile synthetic approach to a group of structurally typical diosgenyl saponins. Tetrahedron Letters, 1998, 39, 6511-6514.	0.7	36
98	Glycosylation initiated cationic ring-opening polymerization of tetrahydrofuran to prepare neo-glycopolymers. Chemical Communications, 2010, 46, 6060.	2.2	36
99	Synthesis of ginsenoside Rh2 and chikusetsusaponin-LT8 via gold(I)-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate as donor. Tetrahedron Letters, 2011, 52, 3075-3078.	0.7	36
100	Synthesis of the Trisaccharide and Tetrasaccharide Moieties of the Potent Immunoadjuvant QS-21. European Journal of Organic Chemistry, 2004, 2004, 965-973.	1.2	35
101	An Efficient Route toward 2-Amino-β- <scp>d</scp> -galacto- and -glucopyranosides via Stereoselective Michael-Type Addition of 2-Nitroglycals. Journal of Organic Chemistry, 2009, 74, 5079-5082.	1.7	35
102	ortho-Alkynylphenyl thioglycosides as a new type of glycosylation donors under the catalysis of Au(I) complexes. Tetrahedron Letters, 2012, 53, 5231-5234.	0.7	35
103	Facile access to C-glycosyl amino acids and peptides via Ni-catalyzed reductive hydroglycosylation of alkynes. Nature Communications, 2021, 12, 4924.	5.8	35
104	Expeditious synthesis of saponin P57, an appetite suppressant from Hoodia plants. Chemical Communications, 2012, 48, 8679.	2.2	34
105	Multiple-stage tandem mass spectrometry for differentiation of isomeric saponins. Rapid Communications in Mass Spectrometry, 2004, 18, 2241-2248.	0.7	33
106	Synthesis of Anemoclemoside B, the First Natural Product with an Open-Chain Cyclic Acetal Glycosidic Linkage. Organic Letters, 2005, 7, 1935-1938.	2.4	32
107	Synthesis of Betavulgaroside III, a Representative Triterpene <i>seco</i> -Glycoside. Journal of Organic Chemistry, 2008, 73, 4978-4985.	1.7	32
108	Molecular matchmaking between the popular weight-loss herb <i>Hoodia gordonii</i> and GPR119, a potential drug target for metabolic disorder. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14571-14576.	3.3	32

#	Article	IF	CITATIONS
109	First total synthesis of 25(R)-ruscogenin-1-yl β-D-xylopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-fucopyranoside, an ophiopogonis saponin from the tuber of Liriope muscari (Decne.). Tetrahedron Letters, 1998, 39, 415-418.	0.7	31
110	The first synthetic route to furostan saponins. Tetrahedron Letters, 2001, 42, 77-79.	0.7	31
111	Synthesis of steroidal glycosides bearing the disaccharide moiety of OSW-1 and their antitumor activities. Carbohydrate Research, 2001, 334, 159-164.	1.1	31
112	Synthesis of Sugarâ€Fused Isoxazoline <i>N</i> â€Oxides from 2â€Nitroglycals. European Journal of Organic Chemistry, 2010, 2010, 3579-3582.	1.2	31
113	Toward synthesis of the regular sequence of heparin: synthesis of two tetrasaccharide precursors. Carbohydrate Research, 2006, 341, 1619-1629.	1.1	30
114	Molecular Mechanism of ADP-Ribose Hydrolysis By Human NUDT5 From Structural and Kinetic Studies. Journal of Molecular Biology, 2008, 379, 568-578.	2.0	30
115	Gold(i)-catalyzed C-glycosylation of glycosyl ortho-alkynylbenzoates: the role of the moisture sequestered by molecular sieves. Chemical Communications, 2016, 52, 12183-12186.	2.2	30
116	Synthesis of tamarixetin and isorhamnetin 3-O-neohesperidoside. Carbohydrate Research, 2005, 340, 1682-1688.	1.1	29
117	<i>Arabidopsis</i> Acetylâ€Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indoleâ€3 Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes ^F . Journal of Integrative Plant Biology, 2012, 54, 471-485.	4.1	29
118	Four new dimeric triterpene glucosides from Sanguisorba officinalis. Tetrahedron, 2004, 60, 11647-11654.	1.0	28
119	Facile Conversion of Spirostan Saponin into Furostan Saponin:  Synthesis of Methyl Protodioscin and Its 26-Thio-analogue. Organic Letters, 2006, 8, 2679-2682.	2.4	28
120	Total Synthesis of Jadomycinsâ€B, S, T, and ILEVS1080. Chemistry - A European Journal, 2013, 19, 8431-8434.	1.7	28
121	Synthesis of a group of diosgenyl saponins by a one-pot sequential glycosylation. Tetrahedron Letters, 1999, 40, 8591-8594.	0.7	27
122	Synthesis of α-l-Threofuranosyl Nucleoside Triphosphates (tNTPs). Organic Letters, 2005, 7, 1485-1487.	2.4	27
123	Synthesis of 3-O-(β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl)-3′-O-(β-d-glucopyranosyl)tamarixetin, the putative structure of aescuflavoside A from the seeds of Aesculus chinensis. Carbohydrate Research, 2006, 341, 1047-1051.	1.1	27
124	Effective synthesis of nucleosides with glycosyl trifluoroacetimidates as donors. Tetrahedron Letters, 2008, 49, 5036-5038.	0.7	27
125	Efficient synthesis of Idraparinux, the anticoagulant pentasaccharide. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3875-3879.	1.0	27
126	Total Synthesis of Echinosideâ€A, a Representative Triterpene Glycoside of Sea Cucumbers. Angewandte Chemie - International Edition, 2017, 56, 7648-7652.	7.2	27

#	Article	IF	CITATIONS
127	The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter. Angewandte Chemie - International Edition, 2019, 58, 10558-10562.	7.2	27
128	Synthesis of the A,B-ring-truncated OSW saponin analogs and their antitumor activities. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5506-5509.	1.0	26
129	Efficient synthesis of a library of heparin tri- and tetrasaccharides relevant to the substrate of heparanase. Organic Chemistry Frontiers, 2014, 1, 405-414.	2.3	26
130	Amipurimycin: Total Synthesis of the Proposed Structures and Diastereoisomers. Angewandte Chemie - International Edition, 2018, 57, 2884-2888.	7.2	26
131	A facile preparation of uronates via selective oxidation with TEMPO/KBr/Ca(OCl)2 under aqueous conditions. Carbohydrate Research, 2004, 339, 1219-1223.	1.1	25
132	Total Synthesis of Candicanosideâ€A, a Potent Antitumor Saponin with a Rearranged Steroid Side Chain. Angewandte Chemie - International Edition, 2007, 46, 2527-2530.	7.2	25
133	Chemoselective glycosylation of carboxylic acid with glycosyl ortho-hexynylbenzoates as donors. Tetrahedron Letters, 2010, 51, 1504-1507.	0.7	25
134	Construction of Interglycosidic N–O Linkage via Direct Glycosylation of Sugar Oximes. Organic Letters, 2012, 14, 4022-4025.	2.4	25
135	Bio―and chemical syntheses of mangiferin and congeners. BioFactors, 2016, 42, 445-458.	2.6	25
136	Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal cancer. Cell Death and Disease, 2019, 10, 618.	2.7	25
137	A Novel and Efficient Deprotection of the Allyl Group at the Anomeric Oxygen of Carbohydrates. Synlett, 1998, 1998, 29-30.	1.0	24
138	Three New Homoisoflavanone Glycosides from the Bulbs ofOrnithogalumcaudatum. Journal of Natural Products, 2002, 65, 218-220.	1.5	24
139	Synthesis of Mono- and Di-O-β-d-glucopyranoside Conjugates of (E)-Resveratrol. Synthesis, 2006, 2006, 1301-1306.	1.2	24
140	Isoflavone Glycosides: Synthesis and Evaluation as αâ€Glucosidase Inhibitors. European Journal of Organic Chemistry, 2008, 2008, 3156-3163.	1.2	24
141	Expeditious Synthesis of Hippuristanol and Congeners with Potent Antiproliferative Activities. Chemistry - A European Journal, 2009, 15, 10356-10359.	1.7	24
142	Modified tunicamycins with reduced eukaryotic toxicity that enhance the antibacterial activity of β-lactams. Journal of Antibiotics, 2017, 70, 1070-1077.	1.0	24
143	Aryl C-glycosylation of phenols with glycosyl trifluoroacetimidates. Carbohydrate Research, 2006, 341, 2717-2722.	1.1	23
144	Total Synthesis of Candicanoside A, a Rearranged Cholestane Disaccharide, and Its 4″â€ <i>O</i> â€{ <i>p</i> â€Methoxybenzoate) Congener. European Journal of Organic Chemistry, 2009, 2009, 259-269.	1.2	23

#	Article	IF	CITATIONS
145	A novel cleavage of allyl protection. Tetrahedron Letters, 1998, 39, 4871-4874.	0.7	22
146	Synthesis and cytotoxicities of dioscin derivatives with decorated chacotriosyl residues. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5629-5632.	1.0	22
147	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie - International Edition, 2017, 56, 2092-2096.	7.2	22
148	Direc T Facile Tetrahydrofuranylation of Alcohols in <i>p</i> -TsCl/NaH/THF System. Synthetic Communications, 1995, 25, 2037-2042.	1.1	21
149	Synthesis of (25R)-ruscogenin-1-yl β-d-xylopyranosyl-(1→3)-[β-d-glucopyranosyl-(1→2)]-β-d-fucopyranoside. Carbohydrate Research, 2000, 329, 745-754.	1.1	21
150	Synthesis of a S-linked heparan sulfate trisaccharide as the substrate mimic of heparanase. Tetrahedron Letters, 2005, 46, 4337-4340.	0.7	21
151	Synthesis, cytotoxicity, and hemolytic activity of 6′-O-substituted dioscin derivatives. Carbohydrate Research, 2007, 342, 2705-2715.	1.1	21
152	Lipase-catalyzed regioselective acylation of diosgenyl saponins. Tetrahedron Letters, 2001, 42, 5513-5516.	0.7	20
153	SBF-1, a synthetic steroidal glycoside, inhibits melanoma growth and metastasis through blocking interaction between PDK1 and AKT3. Biochemical Pharmacology, 2012, 84, 172-181.	2.0	20
154	Naturally Occurring Polyphenolic Glucosidase Inhibitors. Israel Journal of Chemistry, 2015, 55, 268-284.	1.0	20
155	Total synthesis of astrosterioside A, an anti-inflammatory asterosaponin. Chemical Communications, 2015, 51, 13826-13829.	2.2	20
156	Chemical synthesis of polysaccharides. Current Opinion in Chemical Biology, 2022, 69, 102154.	2.8	20
157	A "Double Random―Strategy for the Preparation of Saponin Libraries. ACS Combinatorial Science, 2001, 3, 404-406.	3.3	19
158	Syntheses of chlorogenin 6α-O-acyl-3-O-β-chacotriosides and their antitumor activities. Carbohydrate Research, 2005, 340, 1453-1459.	1.1	19
159	Synthesis of Oligomeric 4-(Glycosyloxy)benzoate Macrocyclic Glycosides. Journal of Organic Chemistry, 2011, 76, 3654-3663.	1.7	19
160	Evaluation of novel saponins from Psammosilene tunicoides and their analogs as immunomodulators. International Immunopharmacology, 2012, 14, 21-26.	1.7	19
161	Synthesis of Ocotillol-Type Ginsenosides. Journal of Organic Chemistry, 2016, 81, 10279-10294.	1.7	19
162	Microwave-assisted simultaneous O,N-sulfonation in the synthesis of heparin-like oligosaccharides. Organic Chemistry Frontiers, 2016, 3, 103-109.	2.3	19

#	Article	IF	CITATIONS
163	Site-selective C-H hydroxylation of pentacyclic triterpenoids directed by transient chiral pyridine-imino groups. Nature Communications, 2020, 11, 4371.	5.8	19
164	Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry. Analytical Chemistry, 2021, 93, 4666-4675.	3.2	19
165	Stereoselective synthesis of 2-S-ethyl(phenyl)-2-thio-β-glucopyranosides via 1,2-migration and concurrent glycosidation of ethyl(phenyl) 2,3-orthoester-1-thio-α-mannopyranosides. Carbohydrate Research, 2001, 333, 105-114.	1.1	18
166	Antibacterial Diterpenoids from Sagittaria pygmaea. Planta Medica, 2007, 73, 84-90.	0.7	18
167	Au(<scp>i</scp>) ï€-bis(tert-butyldimethylsilyl)acetylene triphenylphosphine complex, an effective pre-catalyst for Au(<scp>i</scp>)-catalyzed reactions. Organic Chemistry Frontiers, 2015, 2, 360-365.	2.3	18
168	Blockade of the interaction between Bcr-Abl and PTB1B by small molecule SBF-1 to overcome imatinib-resistance of chronic myeloid leukemia cells. Cancer Letters, 2016, 372, 82-88.	3.2	18
169	<scp>2â€Diphenylphosphinoyl</scp> â€acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of <scp>l²â€Glycosides</scp> . Chinese Journal of Chemistry, 2022, 40, 443-452.	2.6	18
170	Synthesis and absolute stereochemistry of the acyl moiety of quillajasaponins. Tetrahedron Letters, 2000, 41, 717-719.	0.7	17
171	The Cytotoxicity of Saponins Correlates with Their Cellular Internalization. ChemMedChem, 2007, 2, 288-291.	1.6	17
172	N-Dimethylphosphoryl-protected glucosamine trichloroacetimidate as an effective glycosylation donor. Tetrahedron Letters, 2007, 48, 4557-4560.	0.7	17
173	Effective protection of the N-sulfate of glucosamine derivatives with the 2,2,2-trichloroethyl group. Tetrahedron Letters, 2008, 49, 1682-1685.	0.7	17
174	Inhibition of <i>Plasmodium falciparum</i> Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor. Nucleic Acids Research, 2020, 48, 11566-11576.	6.5	17
175	Trichloroacetimidate as an Efficient Protective Group for Alcohols. Synlett, 1999, 1999, 753-755.	1.0	16
176	Synthesis of bidesmosidic dihydrodiosgenin saponins bearing a 3-O-β-chacotriosyl moiety. Carbohydrate Research, 2004, 339, 1753-1759.	1.1	16
177	Effective Synthesis of αâ€ <scp>d</scp> â€GlcNâ€(1→4)â€ <scp>d</scp> â€GlcA/ <scp>l</scp> â€IdoA Glycosidic under Gold(I) Catalysis. Asian Journal of Organic Chemistry, 2015, 4, 756-762.	Lingage	16
178	Efficient synthesis of baicalin and its analogs. Tetrahedron Letters, 2015, 56, 3816-3819.	0.7	16
179	Efficient synthesis of rottlerin and its two subunits. Tetrahedron Letters, 2016, 57, 1856-1859.	0.7	16
180	A Glucose-Triptolide Conjugate Selectively Targets Cancer Cells under Hypoxia. IScience, 2020, 23, 101536.	1.9	16

#	Article	IF	CITATIONS
181	GLYCOSYL DONORS WITH PHOSPHORIMIDATE LEAVING GROUPS FOR EITHER α- OR β- GLYCOSIDATION. Tetrahedron Letters, 1997, 38, 6139-6142.	0.7	15
182	An improved procedure for nucleoside synthesis using glycosyl trifluoroacetimidates as donors. Carbohydrate Research, 2009, 344, 1034-1038.	1.1	15
183	Synthesis of 5,6â€Ðihydroâ€OSWâ€1 and its antitumor activities. Chinese Journal of Chemistry, 2004, 22, 994-998.	2.6	15
184	Structural and stereochemical requirements of the spiroketal group of hippuristanol for antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3112-3115.	1.0	15
185	Glycosylation Reactions in the Synthesis of Flavonoid Glycosides. Synthesis, 2014, 46, 1030-1045.	1.2	15
186	Three Dammarane-Type Saponins fromGynostemma pentaphyllum. Planta Medica, 2005, 71, 880-884.	0.7	14
187	Synthesis of raphanuside, an unusual oxathiane-fused thioglucoside isolated from the seeds of Raphanus sativus L Carbohydrate Research, 2010, 345, 309-314.	1.1	14
188	Characterization of the Stereochemical Structures of 2 <i>H</i> â€Thiazolo[3,2â€ <i>a</i>]pyrimidine Compounds and Their Binding Affinities for Antiâ€apoptotic Bclâ€2 Family Proteins. ChemMedChem, 2013, 8, 1345-1352.	1.6	14
189	A novel and expeditious approach to the stereoselective synthesis of 2-S-ethyl(phenyl)-2-deoxy-1 ² -glycosides, ready precursors to 2-deoxy-Î ² -glycosides. Tetrahedron Letters, 2000, 41, 2961-2964.	0.7	13
190	An unprecedented N-transacylation reaction on 2-acetamido-2-deoxy-α-d-glucopyranosides. Tetrahedron Letters, 2004, 45, 611-613.	0.7	13
191	Structural study on a bioactive fructan from the root of Achyranthes bidentata Blume. Chinese Journal of Chemistry, 1995, 13, 539-544.	2.6	13
192	Total Synthesis of Nucleoside Antibiotics Plicacetin and Streptcytosine A. Journal of Organic Chemistry, 2018, 83, 7076-7084.	1.7	13
193	PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. Journal of Lipid Research, 2021, 62, 100095.	2.0	13
194	Chemical synthesis of saponins: An update. Advances in Carbohydrate Chemistry and Biochemistry, 2021, 79, 1-62.	0.4	13
195	Revealing Functional Significance of Interleukinâ€2 Glycoproteoforms Enabled by Expressed Serine Ligation. Chinese Journal of Chemistry, 2022, 40, 787-793.	2.6	13
196	High Mass Loading 3Dâ€Printed Sodiumâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	13
197	Chemical Synthesis of (4,6-Pyr)-Gal β1→4GlcNAcβ1→3Fucβ1→OMe: A Pyruvated Trisaccharide Related to the Aggregation of the SpongeMicrociona Prolifera. Journal of Carbohydrate Chemistry, 1998, 17, 439-452.	Cell 0.4	12
198	Synthesis of oligosaccharide fragments of the rhamnogalacturonan of Nerium indicum.	1.1	12

#	Article	IF	CITATIONS
199	Synthesis of the ABC skeleton of the aglycon of Echinoside A. Chinese Chemical Letters, 2015, 26, 1331-1335.	4.8	12
200	Synthesis of Δ ²⁰ -Ginsenosides Rh ₄ , (20 <i>E</i>)-Rh ₃ , Rg ₆ , and R <i>k</i> ₁ : A General Approach To Access Dehydrated Ginsenosides. Journal of Organic Chemistry, 2018, 83, 2601-2610.	1.7	12
201	Chemical Synthesis of Saponins. Advances in Carbohydrate Chemistry and Biochemistry, 2021, 79, 63-150.	0.4	12
202	More than a Leaving Group: <i>N</i> â€Phenyltrifluoroacetimidate as a Remote Directing Group for Highly αâ€Selective 1,2â€ <i>cis</i> Glycosylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
203	Total Synthesis of Starfish Cyclic Steroid Glycosides. Angewandte Chemie - International Edition, 2022, 61, e202203239.	7.2	12
204	A Novel and Effective Procedure for the Preparation of Glucuronides. Organic Letters, 2000, 2, 2539-2541.	2.4	11
205	Tackling the Challenges in the Total Synthesis of Landomycin A. Chemical Record, 2013, 13, 70-84.	2.9	11
206	A Convergent Synthesis of the Triterpene Saponin Asiaticoside. Asian Journal of Organic Chemistry, 2017, 6, 1270-1276.	1.3	11
207	Strategies on the construction of 1,2-branched <i>trans</i> -β-glycosidic linkages and their applications in the synthesis of saponins. Journal of Carbohydrate Chemistry, 2019, 38, 494-508.	0.4	11
208	An analog derived from phenylpropanoids ameliorates Alzheimer's disease–like pathology and protects mitochondrial function. Neurobiology of Aging, 2019, 80, 187-195.	1.5	11
209	Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Advances in Carbohydrate Chemistry and Biochemistry, 2020, 77, 1-69.	0.4	11
210	Chemical Synthesis of Several 2'-‹i>O‹/i>-, 3'-‹i>O‹/i>-Glycosylated Diosgenyl β-D-Glucopyranosides. Journal of Carbohydrate Chemistry, 1999, 18, 1107-1120.	0.4	10
211	6-S-Phenyl-glycopyranosides as ready precursors to the synthesis of glycuronides. Tetrahedron, 2001, 57, 9403-9413.	1.0	10
212	Synthesis ofC-Aryl-flavonoid Derivatives via Suzuki-Miyaura Coupling Reactionâ€. Chinese Journal of Chemistry, 2006, 24, 1154-1162.	2.6	10
213	N-Dimethylphosphoryl-protection in the efficient synthesis of glucosamine-containing oligosaccharides with alternate N-acyl substitutions. Tetrahedron Letters, 2007, 48, 7049-7052.	0.7	10
214	Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation. Angewandte Chemie, 2016, 128, 12214-12218.	1.6	10
215	Synthesis of Landomycin D: Studies on the Saccharide Assembly. Synthesis, 2016, 48, 1693-1699.	1.2	10
216	Synthesis of β-(1→2)-Linked 6-Deoxy- <scp>l</scp> -altropyranose Oligosaccharides via Gold(I)-Catalyzed Glycosylation of an <i>ortho</i> -Hexynylbenzoate Donor. Journal of Organic Chemistry, 2017, 82, 3062-3071.	1.7	10

#	Article	IF	CITATIONS
217	Systematic identification of the protein substrates of UDPâ€GalNAc:polypeptide Nâ€acetylgalactosaminyltransferaseâ€T1/T2/T3 using a human proteome microarray. Proteomics, 2017, 17, 1600485.	1.3	10
218	Identification of the Amipurimycin Gene Cluster Yields Insight into the Biosynthesis of C9 Sugar Nucleoside Antibiotics. Organic Letters, 2019, 21, 3148-3152.	2.4	10
219	Characterization of Miharamycin Biosynthesis Reveals a Hybrid NRPS–PKS to Synthesize High-Carbon Sugar from a Complex Nucleoside. Journal of the American Chemical Society, 2020, 142, 5996-6000.	6.6	10
220	Atomic Resolution Analyses of Isocoumarin Derivatives for Inhibition of Lysyl-tRNA Synthetase. ACS Chemical Biology, 2020, 15, 1016-1025.	1.6	10
221	Chemical Synthesis of Fucosylated Chondroitin Sulfate Oligosaccharides. Journal of Organic Chemistry, 2020, 85, 15908-15919.	1.7	10
222	Regio-selective Dehydrogenation on the D or E Rings of Oleanolic Acid by Pd-Promoted C—H Activation. Acta Chimica Sinica, 2013, 71, 541.	0.5	10
223	The Tmsotf-Promoted "One Pot―β-Glycosidations of Peracetylated Chitobiose. Journal of Carbohydrate Chemistry, 1996, 15, 297-302.	0.4	9
224	1→2 Migration and concurrent glycosidation of phenyl 1-thio-α-mannopyranosides via 2,3-O-cyclic dioxonium intermediates. Tetrahedron, 2003, 59, 249-254.	1.0	9
225	Cholestane Glycosides and Trihydroxy Fatty Acids from the Rhizomes of <i>Dioscorea septemloba</i> . Planta Medica, 2010, 76, 291-294.	0.7	9
226	Efficient synthesis of kaempferol 3,7-O-bisglycosides via successive glycosylation with glycosyl ortho-alkynylbenzoates and trifluoroacetimidates. Tetrahedron Letters, 2012, 53, 2773-2776.	0.7	9
227	A Polystyreneâ€Bound Triphenylphosphine Gold(I) Catalyst for the Glycosylation of Glycosyl <i>ortho</i> â€Hexynylbenzoates. Asian Journal of Organic Chemistry, 2015, 4, 1034-1039.	1.3	9
228	Amipurimycin: Total Synthesis of the Proposed Structures and Diastereoisomers. Angewandte Chemie, 2018, 130, 2934-2938.	1.6	9
229	SBF-1 preferentially inhibits growth of highly malignant human liposarcoma cells. Journal of Pharmacological Sciences, 2018, 138, 271-278.	1.1	9
230	Synthesis of Forsythenethoside A, a Neuroprotective Macrocyclic Phenylethanoid Glycoside, and NMR Analysis of Conformers. Journal of Organic Chemistry, 2019, 84, 13733-13743.	1.7	9
231	Synthesis of Sea Cucumber Saponins with Antitumor Activities. Journal of Organic Chemistry, 2020, 85, 12080-12096.	1.7	9
232	Ethacrynic acid targets GSTM1 to ameliorate obesity by promoting browning of white adipocytes. Protein and Cell, 2021, 12, 493-501.	4.8	9
233	Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics, 2021, 11, 6592-6606.	4.6	9
234	Fabrication of Diamond Nanoneedle Arrays Containing Highâ€Brightness Siliconâ€Vacancy Centers. Advanced Optical Materials, 2021, 9, 2101427.	3.6	9

#	Article	IF	CITATIONS
235	Direct Synthesis of 2,6â€Dideoxyâ€Î²â€glycosides and βâ€Rhamnosides with a Stereodirecting 2â€(Diphenylphosphinoyl)acetyl Group. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
236	Synthesis of Kaempferol 3-O-[2′′,3′′- and 2′′,4′′-Di-O-(E)-p-coumaroyl]-α-l-rhamnopyranos 915-918.	ides, Synle 1.0	ett, 2011, 20

237	Probing the Key Interactions between Human Atg5 and Atg16 Proteins: A Prospective Application of Molecular Modeling. ChemMedChem, 2013, 8, 1270-1275.	1.6	8
238	A Glycal Approach to the Synthesis of Pregnane Glycoside P57. Chinese Journal of Chemistry, 2018, 36, 1007-1010.	2.6	8
239	Synthesis and antiproliferative activities of OSW-1 analogues bearing 2-acylamino-xylose residues. Organic Chemistry Frontiers, 2019, 6, 2385-2391.	2.3	8
240	Total Synthesis of Macrocyclic Dysoxylactam A. Chemistry - an Asian Journal, 2020, 15, 2467-2469.	1.7	8
241	Total Synthesis of Nucleoside Antibiotics Amicetin, Plicacetin, and Cytosaminomycin A—D. Chinese Journal of Chemistry, 2021, 39, 2679-2684.	2.6	8
242	Synthesis of steroidal saponins bearing an aromatic E ring. Tetrahedron Letters, 2007, 48, 7323-7326.	0.7	7
243	Synthesis and anti-tumor activities of methyl 2-O-aryl-6-O-aryl′-d-glucopyranosides. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2855-2858.	1.0	7
244	A divergent approach to the synthesis of simplexides and congeners via a late-stage olefin cross-metathesis reaction. Organic and Biomolecular Chemistry, 2013, 11, 4971.	1.5	7
245	The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter. Angewandte Chemie, 2019, 131, 10668-10672.	1.6	7
246	Synthesis of spirostanol saponins via gold(I) atalyzed glycosylation in the presence of Ga(OTf) 3 , In(OTf) 3 , or HOTf. Chinese Journal of Chemistry, 2019, 37, 827-833.	2.6	7
247	Preparation of Glycosyl Dimethylthiophosphates and Their Application as Glycosyl Donors. Journal of Carbohydrate Chemistry, 1998, 17, 547-556.	0.4	6
248	First Total Synthesis of Caminoside A, an Antimicrobial Glycolipid from Sponge. Synlett, 2005, 2005, 437-440.	1.0	6
249	Selective catalytic hydrogenation of the N-acyl and uridyl double bonds in the tunicamycin family of protein N-glycosylation inhibitors. Journal of Antibiotics, 2017, 70, 1122-1128.	1.0	6
250	Coinage Metal (Bisfluorosulfonyl)imide Complexes: Preparation, Characterization, and Catalytic Applications. European Journal of Inorganic Chemistry, 2020, 2020, 107-118.	1.0	6
251	Synthesis and Antiproliferative Activities of OSW â€1 Analogues Bearing 2â€â€•O ―p â€Acylaminobenzoyl Residues â€. Chinese Journal of Chemistry, 2020, 38, 1091-1097.	2.6	6
252	A dehydrative glycosylation protocol mediated by nonafluorobutanesulfonyl fluoride (NfF).	1.0	6

²² Tetrahedron, 2021, 78, 131800.

#	Article	IF	CITATIONS
253	Selective targeting of the androgen receptor-DNA binding domain by the novel antiandrogen SBF-1 and inhibition of the growth of prostate cancer cells. Investigational New Drugs, 2021, 39, 442-457.	1.2	6
254	Total Syntheses of Aturanosides A and B. Organic Letters, 2021, 23, 6680-6684.	2.4	6
255	An unexpected rearrangement of pent-4-enofuranosides to cyclopentanones upon hydrogenolysis of the anomeric benzyl group. Carbohydrate Research, 2016, 432, 36-40.	1.1	5
256	A palladium-catalyzed approach to allenic aromatic ethers and first total synthesis of terricollene A. Chemical Science, 2021, 12, 9347-9351.	3.7	5
25 7	Synthesis of Oligosaccharides Relevant to the Substrates of Heparanase <i>via</i> Dehydrative Glycosylation. Acta Chimica Sinica, 2020, 78, 767.	0.5	5
258	Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic Aâ€94964. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
259	Inter-domain movement of spin labels in the vesicle monolayers of hybrid bolaamphiphiles. Supramolecular Chemistry, 1995, 5, 193-195.	1.5	4
260	Synthesis of Talosin A and B, Two Bioactive Isoflavonoid Glycosides. Chinese Journal of Chemistry, 2010, 28, 1725-1730.	2.6	4
261	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie, 2017, 129, 2124-2128.	1.6	4
262	Facile Synthesis of Saikosaponins. Molecules, 2021, 26, 1941.	1.7	4
263	A Mild Glycosylation Protocol with Glycosyl 1â€Methylimidazoleâ€2â€carboxylates as Donors. European Journal of Organic Chemistry, 2021, 2021, 4333-4344.	1.2	4
264	A Stereoselective Glycosylation Approach to the Construction of 1,2â€ <i>trans</i> â€Î²â€ <scp>d</scp> â€Glycosidic Linkages and Convergent Synthesis of Saponins. Chemistry - / European Journal, 2022, 28, e202104002.	A 1.7	4
265	GeCl ₂ ·Dioxane–AgBF ₄ Catalyzed Activation of Glycosyl Fluorides for Glycosylation. Organic Letters, 2022, 24, 3626-3630.	2.4	4
266	A proline-catalyzed aldol approach to the synthesis of 1-N-iminosugars of the d-glucuronic acid type. Tetrahedron Letters, 2008, 49, 672-674.	0.7	3
267	Total Synthesis of Echinosideâ€A, a Representative Triterpene Glycoside of Sea Cucumbers. Angewandte Chemie, 2017, 129, 7756-7760.	1.6	3
268	Organic Chemistry for the Future. Asian Journal of Organic Chemistry, 2018, 7, 489-489.	1.3	3
269	Dimerization of aldosuloses and aldonolactones into branched higher carbon sugars. Chemical Communications, 2020, 56, 2020-2022.	2.2	3
270	Facile Synthesis of Oleananeâ€ŧype Pentacyclic Triterpenoids Bearing Hydroxy Groups on D/E Rings. Asian Journal of Organic Chemistry, 2021, 10, 1752-1755.	1.3	3

#	Article	IF	CITATIONS
271	Total Synthesis of Dammarane-Type Saponins Ginsenoside Re and Notoginsenoside R1. Acta Chimica Sinica, 2018, 76, 278.	0.5	3
272	Facile Synthesis of Ginsenoside Ro. Synlett, 2004, 2004, 0259-0262.	1.0	2
273	Tackling the Challenge of the Total Synthesis of Periploside A. Synlett, 2018, 29, 1683-1692.	1.0	2
274	SBF-1 inhibits contact hypersensitivity in mice through down-regulation of T-cell-mediated responses. BMC Pharmacology & Toxicology, 2019, 20, 86.	1.0	2
275	Synthetic Homogeneous Clycoforms of the SARSâ€CoVâ€2 Spike Receptorâ€Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angewandte Chemie, 2021, 133, 13014-13020.	1.6	2
276	Solving the Structural Puzzles of Amipurimycin and Miharamycins Enabled by Stereodivergent Total Synthesis. Chemical Record, 2021, 21, 3015-3028.	2.9	2
277	Synthesis of a Typical Glucuronide-Containing Saponin, 28-O-β-d-Glucopyranosyl Oleanate 3-O-β-d-Galactopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→3)]-β-d-glucuronopyranoside. Synthesis, 2004, 2004, 1641-1647.	1.2	1
278	Synthesis of 4â€(2â€Phenylhydrazono)â€1â€(4â€phenylthiazolâ€2â€yl)â€1 <i>H</i> â€pyrazolâ€5(4 <i>H</i>)â€e and Characterization of Their Affinities to Antiâ€apoptotic Bclâ€2 Family Proteins. Chinese Journal of Chemistry, 2013, 31, 1133-1138.	one Comp 2.6	ounds 1
279	Innenrücktitelbild: The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter (Angew. Chem. 31/2019). Angewandte Chemie, 2019, 131, 10875-10875.	1.6	1
280	Synthesis of Pashinintide A, a Natural Cyclic Hexapeptide Supposedly Capable of Forming a Complex with Sucrose. Asian Journal of Organic Chemistry, 2020, 9, 53-56.	1.3	1
281	A New Approach to the Synthesis of Acteoside. Chinese Journal of Organic Chemistry, 2020, 40, 3439.	0.6	1
282	More than a Leaving Group: <i>N</i> â€Phenyltrifluoroacetimidate as a Remote Directing Group for Highly αâ€Selective 1,2― <i>cis</i> Glycosylation. Angewandte Chemie, 0, , .	1.6	1
283	Direct Synthesis of 2,6â€Dideoxyâ€Î²â€glycosides and βâ€Rhamnosides with a Stereodirecting 2â€(Diphenylphosphinoyl)acetyl Group. Angewandte Chemie, 2022, 134, .	1.6	1
284	Synthesis of steroid saponins from Chinese herbs. Studies in Plant Science, 1999, , 196-200.	0.5	0
285	Modern Synthetic Methods in Carbohydrate Chemistry. From Monosaccharides to Complex Glycoconjugates. Herausgegeben von Daniel B. Werz und Sebastien Vidal Angewandte Chemie, 2014, 126, 6976-6977.	1.6	0
286	Chemical glycosylation of protein. Scientia Sinica Chimica, 2012, 42, 1746-1759.	0.2	0
287	Efficient Synthesis of Representative Flavone-7-O-Glycosides. Acta Chimica Sinica, 2019, 77, 999.	0.5	0
288	Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic Aâ€94964. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
289	Total Synthesis of Starfish Cyclic Steroid Glycosides. Angewandte Chemie, 0, , .	1.6	0