Lubomira Tosheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4122253/publications.pdf

Version: 2024-02-01

70 papers 2,966 citations

331670 21 h-index 54 g-index

71 all docs

71 docs citations

71 times ranked

3548 citing authors

#	Article	IF	Citations
1	The denture microbiome in health and disease: an exploration of a unique community. Letters in Applied Microbiology, 2022, 75, 195-209.	2.2	8
2	Scalable solvent-free synthesis of aggregated nanosized single-phase cancrinite zeolite. Materials Today Communications, 2022, 32, 103879.	1.9	1
3	Synergistic Catalytic Effect of Sulphated Zirconia—HCl System for Levulinic Acid and Solid Residue Production Using Microwave Irradiation. Energies, 2021, 14, 1582.	3.1	5
4	FAU-Type Zeolite Synthesis from Clays and Its Use for the Simultaneous Adsorption of Five Divalent Metals from Aqueous Solutions. Materials, 2021, 14, 3738.	2.9	7
5	TiO2 supported natural zeolites as biogas enhancers through photocatalytic pre-treatment of Miscanthus x giganteous crops. Energy, 2020, 205, 117954.	8.8	13
6	Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. Journal of Environmental Chemical Engineering, 2020, 8, 103895.	6.7	129
7	Silicalite-1 synthesized with geothermal and Ludox colloidal silica and corresponding TiO2/silicalite-1 hybrid photocatalysts for VOC oxidation. Microporous and Mesoporous Materials, 2020, 302, 110202.	4.4	6
8	Tuning the composition of porous resin-templated TiO2 macrobeads for optimized photocatalytic performance. Catalysis Today, 2019, 326, 54-59.	4.4	4
9	Waste peat ash mineralogy and transformation to microporous zeolites. Fuel Processing Technology, 2019, 194, 106124.	7.2	2
10	Characterisation and properties of visible light-active bismuth oxide-titania composite photocatalysts. Sustainable Materials and Technologies, 2019, 22, e00112.	3.3	7
11	Methane oxidation over zeolite catalysts prepared from geothermal fluids. Microporous and Mesoporous Materials, 2019, 285, 56-60.	4.4	9
12	Zeolite-embedded silver extends antimicrobial activity of dental acrylics. Colloids and Surfaces B: Biointerfaces, 2019, 173, 52-57.	5 . O	24
13	Toxicity and Antimicrobial Properties of ZnO@ZIF-8 Embedded Silicone against Planktonic and Biofilm Catheter-Associated Pathogens. ACS Applied Nano Materials, 2018, 1, 1657-1665.	5.0	41
14	Titania coating of mesoporous silica nanoparticles for improved biocompatibility and drug release within blood vessels. Acta Biomaterialia, 2018, 76, 208-216.	8.3	21
15	Application of Cu-FAU nanozeolites for decontamination of surfaces soiled with the ESKAPE pathogens. Microporous and Mesoporous Materials, 2017, 253, 233-238.	4.4	8
16	Rapid screening of the antimicrobial efficacy of Ag zeolites. Colloids and Surfaces B: Biointerfaces, 2017, 157, 254-260.	5.0	22
17	Carbide, nitride and sulfide transition metal-based macrospheres. Journal of the European Ceramic Society, 2017, 37, 1127-1130.	5.7	6
18	Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity. Applied Surface Science, 2017, 392, 590-597.	6.1	20

#	Article	IF	CITATIONS
19	A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity. Coatings, 2016, 6, 29.	2.6	11
20	Titanium silicalite-1 macrostructures for photocatalytic removal of organic pollutants from aqueous media. Journal of Porous Materials, 2016, 23, 1421-1429.	2.6	5
21	Real-time observation of aortic vessel dilation through delivery of sodium nitroprusside via slow release mesoporous nanoparticles. Journal of Colloid and Interface Science, 2016, 478, 127-135.	9.4	9
22	Silver zeolite-loaded silicone elastomers: a multidisciplinary approach to synthesis and antimicrobial assessment. RSC Advances, 2015, 5, 40932-40939.	3.6	21
23	Comparative Study of Nanoâ€ZSMâ€5 Catalysts Synthesized in OH ^{â^'} and F ^{â^'} Media. Advanced Functional Materials, 2014, 24, 257-264.	14.9	98
24	Synthesis of colloidal silicalite-1 at high temperatures. Microporous and Mesoporous Materials, 2014, 187, 71-76.	4.4	11
25	Silver confined within zeolite EMT nanoparticles: preparation and antibacterial properties. Nanoscale, 2014, 6, 10859-10864.	5.6	49
26	MFI-type materials prepared by co-condensation synthesis approach. Catalysis Today, 2013, 204, 66-72.	4.4	2
27	Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 2013, 113, 6734-6760.	47.7	511
28	Micron- and nanosized FAU-type zeolites from fly ash for antibacterial applications. Journal of Materials Chemistry, 2012, 22, 16897.	6.7	32
29	Gravimetric and spectroscopic studies of the chemical combination of moisture by as-fired and reheated terracotta. Journal of the European Ceramic Society, 2010, 30, 1867-1872.	5.7	19
30	Monoparticulate films of polyaniline. Thin Solid Films, 2009, 517, 5459-5463.	1.8	13
31	Effect of the zeolite crystal size on the structure and properties of carbon replicas made by a nanocasting process. Carbon, 2009, 47, 1066-1073.	10.3	26
32	Strategies Towards the Assembly of Preformed Zeolite Crystals into Supported Layers. , 2009, , 501-519.		2
33	Indirect Observation of Structured Incipient Zeolite Nanoparticles in Clear Precursor Solutions. Angewandte Chemie - International Edition, 2008, 47, 8650-8653.	13.8	13
34	Silicalite-1 films with preferred orientation. Microporous and Mesoporous Materials, 2008, 116, 22-27.	4.4	16
35	Porous materials via egg-constituents templating. New Journal of Chemistry, 2008, 32, 1331.	2.8	16
36	Steam-assisted synthesis of zeolite films from spin-coated zeolite precursor coatings. Journal of Materials Chemistry, 2008, 18, 3563.	6.7	16

#	Article	IF	CITATIONS
37	AlPO ₄ -18 Seed Layers and Films by Secondary Growth. Chemistry of Materials, 2008, 20, 5721-5726.	6.7	37
38	New Insights into Structural Alteration of Enamel Apatite Induced by Citric Acid and Sodium Fluoride Solutions. Journal of Physical Chemistry B, 2008, 112, 8840-8848.	2.6	18
39	Synthesis of Silicalite-1 films by a steam-assisted crystallization method. Studies in Surface Science and Catalysis, 2008, 174, 641-644.	1.5	O
40	Modified colloidal silicalite-1 crystals and their use for preparation of Langmuir-Blodgett films. Studies in Surface Science and Catalysis, 2007, , 577-584.	1.5	5
41	Zeolite Beta Films Prepared via the Langmuirâ^'Blodgett Technique. Journal of Physical Chemistry C, 2007, 111, 12052-12057.	3.1	16
42	One-pot template extraction and alumination of BEC-type zeolite. Studies in Surface Science and Catalysis, 2007, 170, 616-621.	1.5	10
43	Influence of the dispersion medium on the properties of spin-coated Silicalite-1 films. Microporous and Mesoporous Materials, 2007, 103, 296-301.	4.4	11
44	Effect of crystal morphology on the orientation of LTL-type zeolite films. Studies in Surface Science and Catalysis, 2005, 158, 367-374.	1.5	4
45	Silicalite-1 crystallization on glass fiber filter discs. Microporous and Mesoporous Materials, 2005, 81, 11-18.	4.4	2
46	Meso/macroporous AlPO-5 spherical macrostructures tailored by resin templating. Microporous and Mesoporous Materials, 2005, 78, 181-188.	4.4	22
47	Zeolite beta films synthesized from basic and near-neutral precursor solutions and gels. Materials Science and Engineering C, 2005, 25, 570-576.	7.3	17
48	Carbon spheres prepared from zeolite Beta beads. Carbon, 2005, 43, 2474-2480.	10.3	51
49	Supported and self-bonded molecular sieve structures. Comptes Rendus Chimie, 2005, 8, 475-484.	0.5	17
50	Nanozeolites: Synthesis, Crystallization Mechanism, and Applications. ChemInform, 2005, 36, no.	0.0	3
51	Self-Bonded Zeolite Beta/MCM-41 Composite Spheres. Journal of Porous Materials, 2005, 12, 193-199.	2.6	3
52	Room temperature synthesis: an efficient way for studying the zeolite formation. Studies in Surface Science and Catalysis, 2005, 158, 73-80.	1.5	6
53	Nanozeolites: Â Synthesis, Crystallization Mechanism, and Applications. Chemistry of Materials, 2005, 17, 2494-2513.	6.7	1,050
54	Synthesis of Zeolite Nanocrystals at Room Temperature. Langmuir, 2005, 21, 10724-10729.	3.5	118

#	Article	IF	Citations
55	Carbon and SiC Macroscopic Beads from Ion-Exchange Resin Templates. Journal of the American Chemical Society, 2004, 126, 13624-13625.	13.7	29
56	Options for the Design of Structured Molecular Sieve Materials. ChemInform, 2003, 34, no.	0.0	0
57	Vanadium modified AlPO-5 spheres through resin macrotemplating. Microporous and Mesoporous Materials, 2003, 66, 321-329.	4.4	29
58	Raman Scattering in Locally Inhomogeneous Oxide Crystals. Phase Transitions, 2003, 76, 17-32.	1.3	4
59	ZSM-5 spheres prepared by resin templating. Studies in Surface Science and Catalysis, 2002, , 183-190.	1.5	12
60	Options for the design of structured molecular sieve materials. Studies in Surface Science and Catalysis, 2002, , 1437-1448.	1.5	1
61	Chromium containing zeolite beta macrostructures. Studies in Surface Science and Catalysis, 2002, 142, 1449-1455.	1.5	2
62	Palladium-Containing Zeolite Beta Macrostructures Prepared by Resin Macrotemplating. Chemistry of Materials, 2002, 14, 4881-4885.	6.7	27
63	Spherical silica macrostructures containing vanadium and tungsten oxides assembled by the resin templating method. Microporous and Mesoporous Materials, 2002, 55, 253-263.	4.4	29
64	Tailored palladium containing silica spheres. Chemical Communications, 2001, , 1112-1113.	4.1	6
65	Zeolite beta spheres. Microporous and Mesoporous Materials, 2001, 48, 31-37.	4.4	64
66	Silicalite-1 macrostructures – preparation and structural features. Microporous and Mesoporous Materials, 2000, 39, 91-101.	4.4	36
67	Silicalite-1 containing microspheres prepared using shape-directing macro-templates. Microporous and Mesoporous Materials, 2000, 35-36, 621-629.	4.4	110
68	Amorphous very high surface area silica macrostructures. Journal of Materials Chemistry, 2000, 10, 2330-2337.	6.7	12
69	A method for the preparation of silicalite-1 microspheres. Studies in Surface Science and Catalysis, 1999, 125, 21-28.	1.5	1
70	EPR study on the chemistry and photochemistry of copper(II) dithiocarbamate mixed-ligand complexes. Applied Magnetic Resonance, 1996, 10, 151-157.	1.2	7