Yau-yuen Yeung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4121841/publications.pdf

Version: 2024-02-01

66 1,586 22 37
papers citations h-index g-index

66 66 776
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mechanisms of bismuth-activated near-infrared photoluminescence – a first-principles study on the MXCl3 series. Physical Chemistry Chemical Physics, 2021, 23, 17420-17429.	2.8	5
2	Mechanisms of bismuth-activated near-infrared photoluminescence – a first-principles study on the MXCl3 series. Physical Chemistry Chemical Physics, 2021, 23, 17420-17429. First-principles study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Bi</mml:mi><mml:mrow><mml:mi>Ca</mml:mi><mml:mi>M<td>ow><mm< td=""><td>ıl:mrow><m sub><mml:r< td=""></mml:r<></m </td></mm<></td></mml:mi></mml:mrow></mml:mrow></mml:msup></mml:math>	ow> <mm< td=""><td>ıl:mrow><m sub><mml:r< td=""></mml:r<></m </td></mm<>	ıl:mrow> <m sub><mml:r< td=""></mml:r<></m

#	Article	IF	Citations
19	Theoretical investigation of the electronic structure and luminescence properties for Nd _x Y _{1â^x} Al ₃ (BO ₃) ₄ nonlinear laser crystal. Journal of Materials Chemistry C, 2017, 5, 7174-7181.	5.5	30
20	Geometric, electronic and optical properties of undoped and cerium-doped La5(Si2+B1â^2)(O13â^2N) solid solutions: A theoretical investigation. Journal of Luminescence, 2017, 192, 1026-1032.	3.1	2
21	Structural Evolutions and Crystal Field Characterizations of Tm-Doped YAIO ₃ : New Theoretical Insights. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30422-30429.	8.0	33
22	Effects of vacancies on valence stabilities of europium ions in \hat{l}^2 -Ca2SiO4: Eu phosphors. Journal of Luminescence, 2016, 178, 121-127.	3.1	15
23	Determination of the microstructure, energy levels and magnetic dipole transition mechanism for Tm ³⁺ doped yttrium aluminum borate. Journal of Materials Chemistry C, 2016, 4, 1988-1995.	5.5	17
24	Chinese students' science-related experiences: Comparison of the ROSE study in Xinjiang and Shanghai. Research in Science and Technological Education, 2015, 33, 218-236.	2.5	1
25	Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park. Journal of Science Education and Technology, 2015, 24, 580-594.	3.9	13
26	Trends in Atomic Parameters for Crystals and Free Ions across the Lanthanide Series: The Case of LaCl ₃ :Ln ³⁺ . Journal of Physical Chemistry A, 2015, 119, 6309-6316.	2.5	15
27	Integrating Effective Pedagogies in Science Education with a Design of Alternative Experiments on Electromagnetics. Eurasia Journal of Mathematics, Science and Technology Education, 2014, 10, .	1.3	2
28	Semi-empirical calculations of radiative rates for parity-forbidden transitions within the 4f2configuration of Ba-like ions La+, Ce2+, Pr3+and Nd4+and 4f12configuration of Dy-like Yb4+. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 145002.	1.5	5
29	Reduced matrix elements of spin–spin interactions for the atomic -electron configurations. Atomic Data and Nuclear Data Tables, 2014, 100, 536-576.	2.4	20
30	Some Aspects of Configuration Interaction of the 4f ^{<i>N</i>} Configurations of Tripositive Lanthanide Ions. Journal of Physical Chemistry A, 2014, 118, 8745-8752.	2.5	15
31	Modeling Spectroscopic Properties of Ni2+ Ions in the Haldane Gap System Y2BaNiO5. Applied Magnetic Resonance, 2013, 44, 899-915.	1.2	14
32	Study of the Defect Structure and Crystal-Field Parameters of \hat{l}_{\pm} -Al2O3:Yb3+. Applied Magnetic Resonance, 2013, 44, 917-925.	1.2	16
33	Nephelauxetic Effects in the Electronic Spectra of Pr ³⁺ . Journal of Physical Chemistry A, 2013, 117, 10726-10735.	2.5	41
34	New analyses of energy level datasets for LaCl3:Ln3+ (Ln=Pr, Nd, Er). Journal of Alloys and Compounds, 2013, 575, 54-60.	5.5	27
35	Parametrization of free ion levels of four isoelectronic 4f2 systems: Insights into configuration interaction parameters. Chemical Physics Letters, 2013, 590, 46-51.	2.6	15
36	What Factors Affect the ⁵ D ₀ Energy of Eu ³⁺ ? An Investigation of Nephelauxetic Effects. Journal of Physical Chemistry A, 2013, 117, 2771-2781.	2.5	76

3

#	Article	IF	Citations
37	Modeling of Spin Hamiltonian Parameters for Vanadyl-Doped $$\{fhbox\{K\}_2hbox\{SO\}_4\}$ Glass. Applied Magnetic Resonance, 2011, 40, 441-448.	1.2	3
38	Identifying professional development environment for mentor teachers at a Learning Centre. Teacher Development, 2010, 14, 351-363.	0.7	5
39	Ninth Graders' Learning Interests, Life Experiences and Attitudes Towards Science & Technology. Journal of Science Education and Technology, 2009, 18, 447-457.	3.9	28
40	An experience of teaching for learning by observation: Remote-controlled experiments on electrical circuits. Computers and Education, 2009, 52, 702-717.	8.3	33
41	Semi-ab initio calculations of superposition model and crystal field parameters for Co2+ ions using the exchange charge model. Journal of Physics and Chemistry of Solids, 2008, 69, 2401-2410.	4.0	49
42	Ground and excited state absorption of Ni2+ ions in MgAl2O4: Crystal field analysis. Journal of Alloys and Compounds, 2007, 432, 61-68.	5.5	48
43	Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+. Journal of Physics Condensed Matter, 2006, 18, 5221-5234.	1.8	42
44	A social network analysis of research collaboration in physics education. American Journal of Physics, 2005, 73, 145-150.	0.7	17
45	Macroscopic study of the social networks formed in web-based discussion forums. , 2005, , .		9
46	Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin–spin and spin–other-orbit interactions for Ni2+(3d8) ions in trigonal crystal fields. Journal of Physics Condensed Matter, 2004, 16, 3481-3494.	1.8	60
47	Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B: Condensed Matter, 2004, 348, 151-159.	2.7	71
48	Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin–other-orbit interactions for d2 and d8 ions at low symmetry C3 symmetry sites: V3+ in Al2O3. Journal of Physics and Chemistry of Solids, 2003, 64, 1419-1428.	4.0	166
49	Spin Hamiltonian and structural disorder analysis for two high temperature Cr3+ defect centers in α-LilO3 crystals—low symmetry effects. Journal of Physics and Chemistry of Solids, 2003, 64, 887-896.	4.0	24
50	Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field - perturbation theory methods versus complete diagonalization methods. Journal of Physics Condensed Matter, 2002, 14, 5619-5636.	1.8	86
51	Correlation of spectroscopic properties and substitutional sites of Cr3+ in aluminosilicates: I. Kyanite. Physics and Chemistry of Minerals, 1994, 21, 526.	0.8	19
52	Correlation of spectroscopic properties and substitutional sites of Cr3+ in aluminosilicates: II. Andalusite and sillimanite. Physics and Chemistry of Minerals, 1994, 21, 532.	0.8	18
53	Model calculation of the spectroscopic properties for Cr 3+ in kyanite. Journal of Luminescence, 1994, 60-61, 108-111.	3.1	16
54	Crystal Field Energy Levels and State Vectors for the 3dN lons at Orthorhombic or Higher Symmetry Sites. Journal of Computational Physics, 1993, 109, 150-152.	3.8	35

#	Article	IF	CITATIONS
55	Ground state energy and effective mass of an interface polaron under strong electron-phonon interactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 183, 418-424.	2.1	1
56	Calculations of vacancy induced properties in palladium using the decoupling transformation approach. Solid State Communications, 1993, 85, 569-572.	1.9	0
57	Crystal field levels and fine structure of the ground orbital state for high spin Fe2+ and Fe4+ ions in YBa2(Cu1â^'xFex)3O7â^'δ. Journal of Physics and Chemistry of Solids, 1993, 54, 733-744.	4.0	11
58	Decoupling transformation calculations of dynamical and vacancy-induced properties in FCC nickel metal. Journal of Physics and Chemistry of Solids, 1993, 54, 553-563.	4.0	2
59	Crystal field levels and zero-field splitting parameters of Cr2+ in the mixed system Rb2MnxCr1â^'xCl4. Physica B: Condensed Matter, 1993, 191, 323-333.	2.7	22
60	Spin parameters for the rare earth ion Gd3+ in some fluorite complexes. Journal of Alloys and Compounds, 1993, 193, 213-215.	5.5	4
61	Effects of the parabolic potential and confined phonons on the polaron in a quantum wire. Physical Review B, 1992, 46, 4630-4637.	3.2	26
62	The cyclotron mass and self-trapping energy of an interface polaron. Solid State Communications, 1992, 81, 325-328.	1.9	5
63	Ligand field analysis of the 3dN ions at orthorhombic or higher symmetry sites. Computers & Chemistry, 1992, 16, 207-216.	1.2	130
64	Electron-confined phonon interaction in a quantum wire with parabolic potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 166, 377-382.	2.1	11
65	Crystal-field and superposition-model analyses of Pr3+-LaF3 in C2 symmetry. Journal of the Less Common Metals, 1989, 148, 213-217.	0.8	17
66	Angular overlap and superposition models of the orbit—lattice interaction. Chemical Physics Letters, 1985, 122, 415-417.	2.6	4