
Juraj Adamik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4121372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel dendritic cell vaccine strategies. , 2022, , 109-135.		1
2	Immunomodulatory impact of $\hat{l}\pm$ -fetoprotein. Trends in Immunology, 2022, 43, 438-448.	6.8	13
3	Cell trafficking and regulation of osteoblastogenesis by extracellular vesicle associated bone morphogenetic protein 2. Journal of Extracellular Vesicles, 2021, 10, e12155.	12.2	16
4	EZH2 Supports Osteoclast Differentiation and Bone Resorption Via Epigenetic and Cytoplasmic Targets. Journal of Bone and Mineral Research, 2020, 35, 181-195.	2.8	26
5	A Novel Sulforaphane-Regulated Gene Network in Suppression of Breast Cancer–Induced Osteolytic Bone Resorption. Molecular Cancer Therapeutics, 2020, 19, 420-431.	4.1	10
6	Dysregulated NF-κB–Dependent ICOSL Expression in Human Dendritic Cell Vaccines Impairs T-cell Responses in Patients with Melanoma. Cancer Immunology Research, 2020, 8, 1554-1567.	3.4	15
7	Impact of checkpoint blockade on cancer vaccine–activated CD8+ T cell responses. Journal of Experimental Medicine, 2020, 217, .	8.5	20
8	Epigeneticâ€Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus, 2019, 3, e10183.	2.7	19
9	Epigenetics of Multiple Myeloma Bone Disease. Current Molecular Biology Reports, 2019, 5, 86-96.	1.6	1
10	Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine, 2018, 111, 373-381.	3.2	25
11	Osteoblast suppression in multiple myeloma bone disease. Journal of Bone Oncology, 2018, 13, 62-70.	2.4	28
12	A combined computational and experimental approach reveals the structure of a C/EBPβ–Spi1 interaction required for IL1B gene transcription. Journal of Biological Chemistry, 2018, 293, 19942-19956.	3.4	5
13	The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis. Frontiers in Endocrinology, 2018, 9, 322.	3.5	39
14	XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome Differentiation Suppression. Frontiers in Endocrinology, 2018, 9, 344.	3.5	20
15	TBK1/Ikkε Inhibitor Amlx Blocks Multiple Myeloma Cell Growth in Vitro and In Vivo. Blood, 2018, 132, 4504-4504.	1.4	1
16	EZH2 or HDAC1 Inhibition Reverses Multiple Myeloma–Induced Epigenetic Suppression of Osteoblast Differentiation. Molecular Cancer Research, 2017, 15, 405-417.	3.4	57
17	Semaphorin 4D to suppress bone formation in multiple myeloma Journal of Clinical Oncology, 2017, 35, 8039-8039.	1.6	2
18	EZH2 Inhibitor GSK126 Exhibits Osteo-Anabolic Properties in MM Bone Disease and Synergizes with Bortezomib to Inhibit MM Cell Viability. Blood, 2016, 128, 3247-3247.	1.4	3

Juraj Adamik

#	Article	IF	CITATIONS
19	LIM-Domain Protein Ajuba Is a Required Co-Factor for Gfi1-Induced Epigenetic Switch Regulating Runx2 Repression in Multiple Myeloma-Exposed Pre-Osteoblasts. Blood, 2015, 126, 4216-4216.	1.4	Ο
20	The IL17A and IL17F loci have divergent histone modifications and are differentially regulated by prostaglandin E2 in Th17 cells. Cytokine, 2013, 64, 404-412.	3.2	23
21	Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 11² and Tumor Necrosis Factor 1±. PLoS ONE, 2013, 8, e70622.	2.5	33
22	Increase of Gfi1 Acetylation by HDAC Inhibitors Blocks Gfi1-Mediated Runx2 Repression in Osteoblast Precursors in Multiple Myeloma Bone Disease. Blood, 2013, 122, 753-753.	1.4	2
23	The Pâ€TEFbâ€dependent Gene Coding for ILâ€1β is More Sensitive to Cellular Metabolism than that of the BRD4â€dependent TNFαâ€coding Gene. FASEB Journal, 2013, 27, 769.8.	0.5	Ο