
Xiaoli Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allâ€Inorganic Perovskite Nanocrystals for Highâ€Efficiency Light Emitting Diodes: Dualâ€Phase CsPbBr ₃ â€CsPb ₂ Br ₅ Composites. Advanced Functional Materials, 2016, 26, 4595-4600.	14.9	425
2	Hybrid Perovskite Lightâ€Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations. Advanced Materials, 2017, 29, 1606405.	21.0	235
3	High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). Nano Energy, 2017, 37, 126-135.	16.0	164
4	Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles. Advanced Functional Materials, 2016, 26, 7708-7716.	14.9	163
5	Thin film perovskite light-emitting diode based on CsPbBr 3 powders and interfacial engineering. Nano Energy, 2017, 37, 40-45.	16.0	107
6	Plasmonic Perovskite Light-Emitting Diodes Based on the Ag–CsPbBr ₃ System. ACS Applied Materials & Interfaces, 2017, 9, 4926-4931.	8.0	91
7	Efficient and Thermally Stable Broad-Band Near-Infrared Emission in a KAIP ₂ O ₇ :Cr ³⁺ Phosphor for Nondestructive Examination. ACS Applied Materials & Interfaces, 2022, 14, 11663-11671.	8.0	88
8	Advanced three-component ZnO/Ag/CdS nanocomposite photoanode for photocatalytic water splitting. Journal of Power Sources, 2014, 269, 466-472.	7.8	82
9	Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations. Nano Energy, 2016, 30, 511-516.	16.0	76
10	All-Perovskite Photodetector with Fast Response. Nanoscale Research Letters, 2019, 14, 291.	5.7	48
11	Codoping-Induced, Rhombus-Shaped Co ₃ O ₄ Nanosheets as an Active Electrode Material for Oxygen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 21745-21750.	8.0	43
12	Achieving an ultra-broadband infrared emission through efficient energy transfer in LiInP2O7: Cr3+, Yb3+ phosphor. Journal of Alloys and Compounds, 2022, 894, 162386.	5.5	40
13	Organometal Trihalide Perovskites with Intriguing Ferroelectric and Piezoelectric Properties. Advanced Functional Materials, 2017, 27, 1702207.	14.9	37
14	Synergistic effects in biphasic nanostructured electrocatalyst: Crystalline core versus amorphous shell. Nano Energy, 2017, 41, 788-797.	16.0	27
15	4â€4: Flexible Quantum Dot Color Converter Film for Micro‣ED Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 30-33.	0.3	27
16	Electric Bias Induced Degradation in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes. Scientific Reports, 2018, 8, 15799.	3.3	26
17	Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 3595-3604.	5.1	24
18	Evaporated Undoped Spiroâ€OMeTAD Enables Stable Perovskite Solar Cells Exceeding 20% Efficiency. Advanced Energy Materials, 2022, 12, .	19.5	22

XIAOLI ZHANG

#	Article	IF	CITATIONS
19	Less-Lead Control toward Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 24242-24248.	8.0	21
20	Direct and Indirect Recombination and Thermal Kinetics of Excitons in Colloidal All-Inorganic Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 19844-19850.	3.1	21
21	Strong hot-phonon bottleneck effect in all-inorganic perovskite nanocrystals. Applied Physics Letters, 2020, 116, .	3.3	19
22	<i>In situ</i> synthesis of blue-emitting bromide-based perovskite nanoplatelets towards unity quantum efficiency and ultrahigh stability. Journal of Materials Chemistry C, 2021, 9, 5535-5543.	5.5	19
23	Synergistic effects of morphological control and enhanced charge collection enable efficient and stable lead-free CsBi ₃ 1 ₁₀ thin film solar cells. Journal of Materials Chemistry A, 2022, 10, 9384-9392.	10.3	16
24	Facile Exfoliation of the Perovskite Thin Film for Visualizing the Buried Interfaces in Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 7458-7465.	5.1	15
25	Phonon mode transformation in size-evolved solution-processed inorganic lead halide perovskite. Nanoscale, 2018, 10, 9892-9898.	5.6	14
26	Deep Blue Emission of All-Bromide-Based Cesium Lead Perovskite Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 1617-1622.	3.1	14
27	Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Applied Materials & Interfaces, 2020, 12, 5081-5089.	8.0	14
28	Formamidinium-Based Quasi-2D Perovskite Nanoplates With Dimensionally Tuned Optical Properties. IEEE Nanotechnology Magazine, 2018, 17, 1165-1170.	2.0	8
29	Surface modification toward luminescent and stable silica-coated quantum dots color filter. Science China Materials, 2019, 62, 1463-1469.	6.3	5
30	Temperature-Dependent Optical Properties of Perovskite Quantum Dots with Mixed-A-Cations. Micromachines, 2022, 13, 457.	2.9	5
31	Properties of mesoporous hybrid perovskite nanocrystals and its application in light-emitting diodes. Nanotechnology, 2021, 32, 485708.	2.6	2
32	EA-Directing Formamidinium-Based Perovskite Microwires with A-Site Doping. ACS Omega, 2021, 6, 7157-7164.	3.5	1
33	20â€2: Mixedâ€Cation Perovskite Lightâ€Emitting Diodes with High Brightness and High Current Efficiency. Digest of Technical Papers SID International Symposium, 2017, 48, 276-279.	0.3	0
34	7.4: Metal Halide Perovskite Nanophosphors for Micro‣EDs. Digest of Technical Papers SID International Symposium, 2019, 50, 65-68.	0.3	0
35	A Short Review on Surfaceâ€Confined Monolayers of Ï€â€Conjugated Polymers for Photovoltaics. Solar Rrl, 0, , 2101086.	5.8	0