
Isabel Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120834/publications.pdf Version: 2024-02-01

ISAREI DIAZ

#	Article	IF	CITATIONS
1	The effect of non-ionic surfactants on the sustainable synthesis of selected MOFs. Catalysis Today, 2022, 390-391, 316-325.	4.4	3
2	Ti-PMO materials as selective catalysts for the epoxidation of cyclohexene and vernonia oil. Catalysis Today, 2022, 390-391, 246-257.	4.4	5
3	Polyaniline supported CdS/CeO2/Ag3PO4 nanocomposite: An "A-B―type tandem n-n heterojunctions with enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 113005.	3.9	33
4	Non-noble MNP@MOF materials: synthesis and applications in heterogeneous catalysis. Dalton Transactions, 2021, 50, 10340-10353.	3.3	29
5	Surfactant-induced hierarchically porous MOF-based catalysts prepared under sustainable conditions and their ability to remove Bisphenol A from aqueous solutions. Catalysis Today, 2021, , .	4.4	6
6	Solvent free epoxidation of vernonia oil using Ti-SBA-15 with tailor made particle morphology and pore size. Catalysis Today, 2020, 345, 190-200.	4.4	11
7	SBA-15 with short channels for laccase immobilization. Microporous and Mesoporous Materials, 2020, 309, 110527.	4.4	15
8	Controlling Particle Morphology and Pore Size in the Synthesis of Ordered Mesoporous Materials. Molecules, 2020, 25, 4909.	3.8	14
9	Composite materials based on zeolite stilbite from Faroe Islands for the removal of fluoride from drinking water. American Mineralogist, 2019, 104, 1556-1564.	1.9	1
10	Observation of Ag Nanoparticles in/on Ag@MIL-100(Fe) Prepared Through Different Procedures. Frontiers in Chemistry, 2019, 7, 686.	3.6	14
11	Microscopy of Nanoporous Crystals. Springer Handbooks, 2019, , 1391-1450.	0.6	5
12	Synthesis of zeolite A using raw kaolin from Ethiopia and its application in removal of Cr(<scp>III</scp>) from tannery wastewater. Journal of Chemical Technology and Biotechnology, 2018, 93, 146-154.	3.2	24
13	Effect of thermal treatment on the photocatalytic behavior of TiO2 supported on zeolites. New Journal of Chemistry, 2018, 42, 12001-12007.	2.8	4
14	Aluminum hydroxide supported on zeolites for fluoride removal from drinking water. Journal of Chemical Technology and Biotechnology, 2017, 92, 605-613.	3.2	22
15	Fe-Al-Mn ternary oxide nanosorbent: Synthesis, characterization and phosphate sorption property. Journal of Environmental Chemical Engineering, 2017, 5, 1330-1340.	6.7	38
16	Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Crystal Growth and Design, 2017, 17, 1806-1813.	3.0	251
17	Environmental uses of zeolites in Ethiopia. Catalysis Today, 2017, 285, 29-38.	4.4	15
18	C _s â€Corrected STEM Imaging of both Pure and Silverâ€Supported Metalâ€Organic Framework MILâ€100(Fe). ChemCatChem, 2017, 9, 3497-3502.	3.7	18

#	Article	IF	CITATIONS
19	Controlled growth of nano-hydroxyapatite on stilbite: Defluoridation performance. Microporous and Mesoporous Materials, 2017, 254, 86-95.	4.4	10
20	ICP-2: A New Hybrid Organo-Inorganic Ferrierite Precursor with Expanded Layers Stabilized by π–π Stacking Interactions. Journal of Physical Chemistry C, 2017, 121, 24114-24127.	3.1	8
21	Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. Journal of Environmental Chemical Engineering, 2017, 5, 3319-3329.	6.7	50
22	Recent Advances on Imaging Porous Frameworks by Electron Microscopy Methods. Microscopy and Microanalysis, 2017, 23, 1798-1799.	0.4	0
23	Nano-crystalline titanium(IV)tungstomolybdate cation exchanger: Synthesis, characterization and ion exchange properties. Journal of Environmental Chemical Engineering, 2017, 5, 1004-1014.	6.7	9
24	Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y. Applied Surface Science, 2016, 378, 473-478.	6.1	54
25	Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin. Applied Clay Science, 2016, 132-133, 485-490.	5.2	83
26	Layered Double Hydroxide and Its Calcined Product for Fluoride Removal from Groundwater of Ethiopian Rift Valley. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	28
27	Chiral Copper(II) Bis(oxazoline) Complexes Directly Coordinated to Amineâ€Functionalized Phenylene/Biphenylene Periodic Mesoporous Organosilicas as Heterogeneous ÂCatalysts. European Journal of Inorganic Chemistry, 2016, 2016, 413-421.	2.0	5
28	Kinetics and mechanisms of adsorption/desorption of the ionic liquid 1â€buthylâ€3â€methylimidazolium bromide into mordenite. Journal of Chemical Technology and Biotechnology, 2016, 91, 705-710.	3.2	10
29	Oxidation of 4–chloro–3–methylphenol using zeolite Y–encapsulated iron(III)–, nickel(II)–, and copper(II)–N,Nâ€~-disalicylidene-1, 2-phenylenediamine complexes. Chinese Journal of Catalysis, 2016, 37, 135-145.	14.0	17
30	Synthesis of zeolite A using kaolin from Ethiopia and its application in detergents. New Journal of Chemistry, 2016, 40, 3440-3446.	2.8	24
31	Defluoridation Performance Comparison of Nano-hydrotalcite/Hydroxyapatite Composite with Calcined Hydrotalcite and Hydroxyapatite. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	7
32	Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous and Mesoporous Materials, 2016, 225, 88-97.	4.4	85
33	Defluoridation performance of nano-hydroxyapatite/stilbite composite compared with bone char. Separation and Purification Technology, 2016, 157, 241-248.	7.9	34
34	Synthesis, characterization and analytical application of polyaniline tin(IV) molybdophosphate composite with nanocrystalline domains. Reactive and Functional Polymers, 2016, 98, 17-23.	4.1	21
35	Atomic Observations of Microporous Materials Highly Unstable under the Electron Beam: The Cases of Tiâ€Doped AlPO ₄ â€5 and Zn–MOFâ€74. ChemCatChem, 2015, 7, 3719-3724.	3.7	38
36	Synthesis, characterization and photocatalytic activity of zeolite supported ZnO/Fe2O3/MnO2 nanocomposites. Journal of Environmental Chemical Engineering, 2015, 3, 1586-1591.	6.7	47

#	Article	IF	CITATIONS
37	Synthesis of zeolite A from Ethiopian kaolin. Microporous and Mesoporous Materials, 2015, 215, 29-36.	4.4	89
38	Removal of chromium(VI) using nano-hydrotalcite/SiO2 composite. Journal of Environmental Chemical Engineering, 2015, 3, 1555-1561.	6.7	28
39	Amino-modified periodic mesoporous biphenylene-silica. Microporous and Mesoporous Materials, 2015, 217, 167-172.	4.4	12
40	Experimental and computational studies on zeolite-Y encapsulated iron(iii) and nickel(ii) complexes containing mixed-ligands of 2,2′-bipyridine and 1,10-phenanthroline. RSC Advances, 2015, 5, 88636-88645.	3.6	12
41	Synthesis, characterization and catalytic application of zeolite based heterogeneous catalyst of iron(III), nickel(II) and copper(II) salen complexes for oxidation of organic pollutants. Journal of Porous Materials, 2015, 22, 1363-1373.	2.6	17
42	Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry, 2015, 17, 1500-1509.	9.0	263
43	Zeolites are no longer a challenge: Atomic resolution data by Aberration-corrected STEM. Micron, 2015, 68, 146-151.	2.2	25
44	Zeolites and Mesoporous Crystals Under the Electron Microscope. , 2015, , 93-138.		2
45	Location of laccase in ordered mesoporous materials. APL Materials, 2014, 2, .	5.1	8
46	Chiral periodic mesoporous copper(II) bis(oxazoline) phenylene–silica: A highly efficient and reusable asymmetric heterogeneous catalyst. Journal of Catalysis, 2014, 320, 63-69.	6.2	9
47	Structures of Silicaâ€Based Nanoporous Materials Revealed by Microscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 521-536.	1.2	14
48	Ion-exchange in natural zeolite stilbite and significance in defluoridation ability. Microporous and Mesoporous Materials, 2014, 193, 93-102.	4.4	42
49	Enzymatic synthesis of epoxy fatty acid starch ester in ionic liquid–organic solvent mixture from vernonia oil. Starch/Staerke, 2014, 66, 385-392.	2.1	19
50	Controlled growth of hydroxyapatite on the surface of natural stilbite from Ethiopia: application in mitigation of fluorosis. RSC Advances, 2014, 4, 7998.	3.6	13
51	Room temperature synthesis of metal organic framework MOF-2. Journal of Porous Materials, 2014, 21, 769-773.	2.6	63
52	Nanoscaled M-MOF-74 Materials Prepared at Room Temperature. Crystal Growth and Design, 2014, 14, 2479-2487.	3.0	155
53	Mesoporous Silicas with Tunable Morphology for the Immobilization of Laccase. Molecules, 2014, 19, 7057-7071.	3.8	47
54	Location of enzyme in lipase-SBA-12 hybrid biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 23-25.	1.8	14

#	Article	IF	CITATIONS
55	Hybrid composites octyl-silica-methacrylate agglomerates as enzyme supports. Applied Catalysis A: General, 2013, 450, 204-210.	4.3	10
56	Natural zeolites from Ethiopia for elimination of fluoride from drinking water. Separation and Purification Technology, 2013, 120, 224-229.	7.9	80
57	Designing Functionalized Mesoporous Materials for Enzyme Immobilization: Locating Enzymes by Using Advanced TEM Techniques. ChemCatChem, 2013, 5, 903-909.	3.7	27
58	Atomic Resolution Analysis of Microporous Titanosilicate ETSâ€10 through Aberration Corrected STEM Imaging. ChemCatChem, 2013, 5, 2595-2598.	3.7	31
59	Micron-Sized Single-Crystal-like CoAPO-5/Carbon Composites Leading to Hierarchical CoAPO-5 with Both Inter- and Intracrystalline Mesoporosity. Crystal Growth and Design, 2013, 13, 2476-2485.	3.0	6
60	Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A. Microporous and Mesoporous Materials, 2013, 166, 117-122.	4.4	52
61	Stripping voltammetric determination of pyridine-2-aldoxime methochloride at the iron(iii) doped zeolite modified glassy carbon electrode. Analyst, The, 2012, 137, 5625.	3.5	11
62	High Energy Ion Irradiation-Induced Ordered Macropores in Zeolite Crystals. Journal of the American Chemical Society, 2011, 133, 18950-18956.	13.7	66
63	In-situ immobilization of enzymes in mesoporous silicas. Solid State Sciences, 2011, 13, 691-697.	3.2	21
64	Atomic Resolution Analysis of Silver Ionâ€Exchanged Zeoliteâ€A. Angewandte Chemie - International Edition, 2011, 50, 11230-11233.	13.8	83
65	TEM studies of zeolites and ordered mesoporous materials. Micron, 2011, 42, 512-527.	2.2	51
66	A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization. Microporous and Mesoporous Materials, 2010, 132, 487-493.	4.4	68
67	Bottle-around-the-ship: A method to encapsulate enzymes in ordered mesoporous materials. Microporous and Mesoporous Materials, 2010, 129, 173-178.	4.4	30
68	Zeolite synthesis using 1-benzyl-1-methylpyrrolidinium in the presence of Na+ as co-structure directing agent. Microporous and Mesoporous Materials, 2009, 118, 273-279.	4.4	3
69	Spheres of Microporous Titanosilicate Umbite with Hierarchical Pore Systems. Advanced Functional Materials, 2008, 18, 1314-1320.	14.9	17
70	Mesoporous titanosilicates synthesized from TS-1 precursors with enhanced catalytic activity in the α-pinene selective oxidation. Applied Catalysis A: General, 2008, 343, 77-86.	4.3	43
71	Immobilization of lipase in ordered mesoporous materials: Effect of textural and structural parameters. Microporous and Mesoporous Materials, 2008, 114, 201-213.	4.4	107
72	Lipase immobilization in ordered mesoporous materials. Studies in Surface Science and Catalysis, 2007, 165, 897-900.	1.5	0

#	Article	IF	CITATIONS
73	Aluminum incorporation into plate-like ordered mesoporous materials obtained from layered zeolite precursors. Studies in Surface Science and Catalysis, 2007, , 177-180.	1.5	1
74	An Approach Toward the Synthesis of Platelike Ordered Mesoporous Materials from Layered Zeolite Precursors. Chemistry of Materials, 2006, 18, 2283-2292.	6.7	35
75	Transmission electron microscopy in formation and growth of ordered mesoporous materials. Current Opinion in Colloid and Interface Science, 2006, 11, 302-307.	7.4	12
76	Organising disordered matter: strategies for ordering the network of mesoporous materials. Comptes Rendus Chimie, 2005, 8, 569-578.	0.5	36
77	Organising Disordered Matter: Strategies for Ordering the Network of Mesoporous Materials. ChemInform, 2005, 36, no.	0.0	3
78	Surface Structure of Zeolite (MFI) Crystals. Chemistry of Materials, 2004, 16, 5226-5232.	6.7	95
79	Structural study by transmission and scanning electron microscopy of the time-dependent structural change in M41S mesoporous silica (MCM-41 to MCM-48, and MCM-50). Journal of Materials Chemistry, 2004, 14, 48-53.	6.7	38
80	Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chemistry of Materials, 2004, 16, 5697-5705.	6.7	164
81	Ferrocenyl Dendrimers Incorporated into Mesoporous Silica: New Hybrid Redox-Active Materialsâ€. Chemistry of Materials, 2003, 15, 1073-1079.	6.7	38
82	High acid catalytic activity of aluminosilicate molecular sieves with MCM-41 structure synthesized from precursors of colloidal faujasite. Chemical Communications, 2003, , 150-151.	4.1	29
83	Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science, 2003, 191, 485-487.	12.6	987
84	Transmission Electron Microscopy Study of the Porous Structure of Aluminas Synthesized by Non-Ionic Surfactant Templating Route. Collection of Czechoslovak Chemical Communications, 2003, 68, 1937-1948.	1.0	8
85	Synthesis and Characterisation of Ordered Mesoporous Acid Catalysts for Synthesis of Biodegradable Surfactants. Collection of Czechoslovak Chemical Communications, 2003, 68, 1914-1926.	1.0	11
86	Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography. Journal of Physical Chemistry B, 2002, 106, 3118-3123.	2.6	160
87	Synthesis of Spongelike Functionalized MCM-41 Materials from Gels Containing Amino Acids. Chemistry of Materials, 2002, 14, 4641-4646.	6.7	41
88	Pore-size control of Al-MCM-41 materials by spontaneous swelling. Studies in Surface Science and Catalysis, 1999, 125, 53-60.	1.5	10