Robert H Blick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120731/publications.pdf

Version: 2024-02-01

217 papers 5,838 citations

37 h-index

94433

70 g-index

220 all docs

220 docs citations

times ranked

220

5109 citing authors

#	Article	IF	CITATIONS
1	Field emission characteristics of ZnO nanowires grown by catalyst-assisted MOCVD on free-standing inorganic nanomembranes. Journal Physics D: Applied Physics, 2022, 55, 255104.	2.8	5
2	Electron spin resonance in a proximity-coupled MoS ₂ /graphene van der Waals heterostructure. AIP Advances, 2022, 12, 035111.	1.3	1
3	Nuclear-induced dephasing and signatures of hyperfine effects in isotopically purified <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">C</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>13</mml:mn></mml:mmultiscripts></mml:math> graphene. Physical Review B. 2022. 105	3.2	2
4	Acoustically Induced Giant Synthetic Hall Voltages in Graphene. Physical Review Letters, 2022, 128, .	7.8	12
5	Polarization amplification by spin-doping in nanomagnetic/graphene hybrid systems. Physical Review Materials, 2021, 5, .	2.4	2
6	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	14.6	60
7	Influence of Alumina Addition on the Optical Properties and the Thermal Stability of Titania Thin Films and Inverse Opals Produced by Atomic Layer Deposition. Nanomaterials, 2021, 11, 1053.	4.1	8
8	Improved thermal stability of zirconia macroporous structures via homogeneous aluminum oxide doping and nanostructuring using atomic layer deposition. Journal of the European Ceramic Society, 2021, 41, 4302-4312.	5.7	8
9	Direct writing of colloidal suspensions onto inclined surfaces: Optimizing dispense volume for homogeneous structures. Journal of Colloid and Interface Science, 2021, 597, 137-148.	9.4	10
10	Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays. Scientific Reports, 2021, 11, 18819.	3.3	8
11	Mechanically Modulated Sideband and Squeezing Effects of Membrane Resonators. Physical Review Letters, 2021, 127, 184301.	7.8	5
12	Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catalysis, 2021, 11, 12947-12962.	11.2	24
13	Culturing human iPSC-derived neural progenitor cells on nanowire arrays: mapping the impact of nanowire length and array pitch on proliferation, viability, and membrane deformation. Nanoscale, 2021, 13, 20052-20066.	5.6	3
14	Subtractive Low-Temperature Preparation Route for Porous SiO2 Used for the Catalyst-Assisted Growth of ZnO Field Emitters. Nanomaterials, 2021, 11, 3357.	4.1	1
15	Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS Nano, 2020, 14, 13091-13102.	14.6	44
16	Microfluidic polyimide gas dynamic virtual nozzles for serial crystallography. Review of Scientific Instruments, 2020, 91, 085108.	1.3	22
17	Neurite guidance and neuro-caging on steps and grooves in 2.5 dimensions. Nanoscale Advances, 2020, 2, 5192-5200.	4.6	8
18	A Temperature-Controlled Patch Clamp Platform Demonstrated on Jurkat T Lymphocytes and Human Induced Pluripotent Stem Cell-Derived Neurons. Bioengineering, 2020, 7, 46.	3.5	5

#	Article	IF	CITATIONS
19	Acoustically driven Dirac electrons in monolayer graphene. Applied Physics Letters, 2020, 116, 103102.	3.3	5
20	Ion Selective Transport of Alkali Ions through a Polyelectrolyte Membrane. Advanced Materials Interfaces, 2020, 7, 2000419.	3.7	2
21	The Nanomechanical Bit. Small, 2020, 16, e2001580.	10.0	15
22	Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomaterials Science, 2020, 8, 2434-2446.	5 . 4	15
23	Ablating nanoscale pores in crystalline quartz using laser-induced micro-plasmas in tri-layer structures. Optical Materials Express, 2020, 10, 1991.	3.0	1
24	Microwave-induced capacitance resonances and anomalous magnetoresistance in double quantum wells. Journal of Applied Physics, 2019, 125, .	2.5	1
25	3D Micromachined Polyimide Mixing Devices for in Situ X-ray Imaging of Solution-Based Block Copolymer Phase Transitions. Langmuir, 2019, 35, 10435-10445.	3.5	14
26	Effects of processing parameters on 3D structural ordering and optical properties of inverse opal photonic crystals produced by atomic layer deposition. International Journal of Ceramic Engineering & Science, 2019, 1, 68-76.	1.2	10
27	Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis. Nanoscale, 2019, 11, 13620-13631.	5.6	21
28	Transparency induced in opals via nanometer thick conformal coating. Scientific Reports, 2019, 9, 11379.	3.3	4
29	Nanoscience and Nanotechnology at the Centennial of UniversitäHamburg. ACS Nano, 2019, 13, 1-3.	14.6	1
30	Cell Culture Platforms: Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailorâ€Made Neuronal Networks (Adv. Biosys. 5/2019). Advanced Biology, 2019, 3, 1970054.	3.0	0
31	Resonant Tunneling Induced Enhancement of Electron Field Emission by Ultra-Thin Coatings. Scientific Reports, 2019, 9, 6840.	3.3	11
32	Time-Resolved Analysis of the Structural Dynamics of Assembling Gold Nanoparticles. ACS Nano, 2019, 13, 6596-6604.	14.6	30
33	Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailorâ€Made Neuronal Networks. Advanced Biology, 2019, 3, e1800329.	3.0	23
34	Culturing and patch clamping of Jurkat T cells and neurons on Al ₂ O ₃ coated nanowire arrays of altered morphology. RSC Advances, 2019, 9, 11194-11201.	3.6	9
35	Low-Temperature Vapor-Solid Growth of ZnO Nanowhiskers for Electron Field Emission. Coatings, 2019, 9, 698.	2.6	7
36	Electrochemical Engineering of Nanoporous Materials for Photocatalysis: Fundamentals, Advances, and Perspectives. Catalysts, 2019, 9, 988.	3.5	18

3

#	Article	IF	CITATIONS
37	Understanding the Growth Mechanisms of Multilayered Systems in Atomic Layer Deposition Process. Chemistry of Materials, 2018, 30, 1971-1979.	6.7	17
38	Optically Active, Self-Assembled Solid-State Nanopores for Single Particle Detection. Biophysical Journal, 2018, 114, 492a.	0.5	0
39	3D Micro Scaffolds for Tailor-Made Three-Dimensional Neural Network Studies. Biophysical Journal, 2018, 114, 672a-673a.	0.5	1
40	Broadband characterization of charge carrier transfer of hybrid graphene-deoxyribonucleic acid junctions. Carbon, 2018, 130, 525-531.	10.3	15
41	Designer Neural Networks with Embedded Semiconductor Microtube Arrays. Langmuir, 2018, 34, 1528-1534.	3.5	11
42	Wireless Sensor-Actuator Network for Cell-Level Treatment Based on Protocol of Collision Segregation via Learning. IEEE Access, 2018, 6, 58967-58976.	4.2	1
43	Photonic materials for high-temperature applications: Synthesis and characterization by X-ray ptychographic tomography. Applied Materials Today, 2018, 13, 359-369.	4.3	18
44	Dataset of ptychographic X-ray computed tomography of inverse opal photonic crystals produced by atomic layer deposition. Data in Brief, 2018, 21, 1924-1936.	1.0	4
45	Single-neuronal cell culture and monitoring platform using a fully transparent microfluidic DEP device. Scientific Reports, 2018, 8, 13194.	3.3	14
46	Tank Circuit for Ultrafast Single-Particle Detection in Micropores. Physical Review Letters, 2018, 121, 078102.	7.8	12
47	Solar Cell Nanowires as Approach for Single Cell Direct Activation. Biophysical Journal, 2018, 114, 669a.	0.5	0
48	Ultra-fast cell counters based on microtubular waveguides. Scientific Reports, 2017, 7, 41584.	3.3	19
49	Effects of electron confinement on the acoustoelectric current in suspended quantum point contacts. Applied Physics Letters, 2017, 110, 223102.	3.3	1
50	Upscaling high-quality CVD graphene devices to 100 micron-scale and beyond. Applied Physics Letters, 2017, 110, .	3.3	16
51	Transition of a nanomechanical Sharvin oscillator towards the chaotic regime. New Journal of Physics, 2017, 19, 033033.	2.9	3
52	Lowâ€Temperature Mullite Formation in Ternary Oxide Coatings Deposited by ALD for Highâ€Temperature Applications. Advanced Materials Interfaces, 2017, 4, 1700912.	3.7	12
53	Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device. Journal of Neuroscience Methods, 2017, 291, 182-189.	2.5	3
54	Photonic Materials: Lowâ€Temperature Mullite Formation in Ternary Oxide Coatings Deposited by ALD for Highâ€Temperature Applications (Adv. Mater. Interfaces 23/2017). Advanced Materials Interfaces, 2017, 4, 1770122.	3.7	1

#	Article	IF	CITATIONS
55	Strain-induced Dirac state shift in topological insulator Bi2Se3 nanowires. Applied Physics Letters, 2017, 111, 171601.	3.3	14
56	Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry. Sensors, 2016, 16, 200.	3.8	3
57	Approaching Integrated Hybrid Neural Circuits: Axon Guiding on Optically Active Semiconductor Microtube Arrays. Advanced Materials Interfaces, 2016, 3, 1600746.	3.7	10
58	Optically active semiconductor nanopores for parallel molecule detection. Applied Physics Letters, 2016, 109, 223103.	3.3	1
59	Optical Microresonators: Approaching Integrated Hybrid Neural Circuits: Axon Guiding on Optically Active Semiconductor Microtube Arrays (Adv. Mater. Interfaces 24/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	0
60	Dynamic control for nanostructures through slowly ramping parameters. Physical Review E, 2016, 93, 062225.	2.1	0
61	Stochastic model of nanomechanical electron shuttles and symmetry breaking. Physical Review E, 2016, 93, 063306.	2.1	2
62	Giant acoustoelectric current in suspended quantum point contacts. Physical Review B, 2016, 94, .	3.2	6
63	Neuroimage: A Novel Highly Efficient Tool for Image Processing of in vivo Neural Networks. Biophysical Journal, 2015, 108, 472a.	0.5	0
64	Synthetic neuronal circuits: Optically active semiconductor microtubes as remotely accessible sensors for action potentials. , 2015 , , .		2
65	Simulation Results for an Optically Active Semiconductor Nanopore. Biophysical Journal, 2015, 108, 326a.	0.5	0
66	Tracing the transition of a macro electron shuttle into nonlinear response. Applied Physics Letters, 2015, 106, 061909.	3.3	7
67	Tightly wrapped semiconductor-axon microtubes for probing hybrid networks: Modeling the capacitive coupling strength. Applied Physics Letters, 2015, 106, .	3.3	1
68	Creation and regulation of ion channels across reconstituted phospholipid bilayers generated by streptavidin-linked magnetite nanoparticles. Physical Review E, 2014, 89, 012707.	2.1	6
69	Modeling a radio-frequency single-electron-transistor scanning probe. Japanese Journal of Applied Physics, 2014, 53, 085001.	1.5	2
70	A single electron nanomechanical Y-switch. Nanoscale, 2014, 6, 8571.	5.6	6
71	Ultra-stable glass microcraters for on-chip patch clamping. RSC Advances, 2014, 4, 39073-39076.	3.6	1
72	Radio-Frequency Tank Circuit for DNA Sequencing. Biophysical Journal, 2014, 106, 415a-416a.	0.5	0

#	Article	IF	Citations
73	Optical Sensing of Action Potentials in Semiconductor Microtubes using In(Al)GaAs Quantum Wells. Biophysical Journal, 2014, 106, 793a.	0.5	0
74	Modeling of the Coupling Strength between Axons and Semiconductor Micro-Tubes. Biophysical Journal, 2013, 104, 164a.	0.5	0
75	Guided Growth and Electrical Probing of Neurons on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes. Biophysical Journal, 2013, 104, 329a.	0.5	2
76	Realizing Broadbands of Strong Nonlinear Coupling in Nanoelectromechanical Electron Shuttles. Physical Review Letters, 2013, 111, 197202.	7.8	17
77	Optical Sensing of Axons in GaAs Ring Resonators. Biophysical Journal, 2013, 104, 162a.	0.5	0
78	Rapid fabrication and piezoelectric tuning of micro- and nanopores in single crystal quartz. Lab on A Chip, 2013, 13, 156-160.	6.0	6
79	Phonon-Assisted Field Emission in Silicon Nanomembranes for Time-of-Flight Mass Spectrometry of Proteins. Nano Letters, 2013, 13, 2698-2703.	9.1	25
80	A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of Large Proteins. Sensors, 2013, 13, 13708-13716.	3.8	8
81	Guided neuronal growth on arrays of biofunctionalized GaAs/InGaAs semiconductor microtubes. Applied Physics Letters, 2013, 103, .	3.3	16
82	Direct Transfer of GaAs Microtube Arrays onto Transparent Substrates for Imaging Neuron Outgrowth. Soft Nanoscience Letters, 2013, 03, 79-82.	0.8	2
83	Radio Frequency Tank Circuit for Probing Planar Lipid Bilayers. Soft Nanoscience Letters, 2013, 03, 87-92.	0.8	2
84	On-Chip Stochastic Resonance of Ion Channel Systems With Variable Internal Noise. IEEE Transactions on Nanobioscience, 2012, 11, 169-175.	3.3	4
85	Prolonged Stochastic Resonance in Single Ion Channel Recordings. Biophysical Journal, 2012, 102, 518a-519a.	0.5	0
86	Nanomechanical bi-polar current switch. , 2012, , .		0
87	Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins. Nanoscale, 2012, 4, 2543.	5.6	11
88	Mechanical actuation of ion channels using a piezoelectric planar patch clamp system. Lab on A Chip, 2012, 12, 80-87.	6.0	13
89	High Bandwidth Resonant Radio Frequency Circuit for Lipid Bilayer Detection. Biophysical Journal, 2012, 102, 181a.	0.5	1
90	Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle. ACS Nano, 2012, 6, 651-655.	14.6	28

#	Article	IF	Citations
91	Wavenumber-Domain Theory of Terahertz Single-Walled Carbon Nanotube Antenna. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 166-175.	2.9	8
92	Piezoelectric Planar Patch Clamp System for Mechanically Actuating Ion Channels. Biophysical Journal, 2011, 100, 620a.	0.5	0
93	A Mechanical Nanomembrane Detector for Time-of-Flight Mass Spectrometry. Nano Letters, 2011, 11, 3681-3684.	9.1	39
94	Giant Piezoelectricity on Si for Hyperactive MEMS. Science, 2011, 334, 958-961.	12.6	394
95	Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth. ACS Nano, 2011, 5, 2447-2457.	14.6	85
96	Local-Wetting-Induced Deformation of Rolled-Up Si/Si-Ge Nanomembranes: A Potential Route for Remote Chemical Sensing. IEEE Nanotechnology Magazine, 2011, 10, 21-25.	2.0	6
97	Direct observation of sub-threshold field emission from silicon nanomembranes. Journal of Applied Physics, 2011, 109, 124504.	2.5	3
98	Direct microwave transmission on single α-hemolysin pores. Applied Physics Letters, 2011, 99, 093105.	3.3	3
99	Fabrication of suspended fully metallic ultraâ€small capacitance nanoâ€junctions. Physica Status Solidi - Rapid Research Letters, 2010, 4, 115-117.	2.4	0
100	Spin relaxation in isotopically purified silicon quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 639-642.	2.7	2
101	Effect of surface bonding on semiconductor nanoribbon wiggling structure. Applied Physics Letters, 2010, 96, 111904.	3.3	8
102	Pauli spin blockade and lifetime-enhanced transport in a Si/SiGe double quantum dot. Physical Review B, 2010, 82, .	3.2	23
103	Local etch control for fabricating nanomechanical devices. Journal of Applied Physics, 2010, 108, 074307.	2.5	4
104	Marshmallowing of nanopillar arrays by field emission. Journal of Applied Physics, 2010, 107, 054308.	2.5	1
105	Radio frequency rectification on membrane bound pores. Nanotechnology, 2010, 21, 075201.	2.6	10
106	Self-excitation of single nanomechanical pillars. New Journal of Physics, 2010, 12, 033008.	2.9	17
107	A mode-locked nanomechanical electron shuttle for phase-coherent frequency conversion. New Journal of Physics, 2010, 12, 023019.	2.9	6
108	Coulomb-Controlled Single Electron Field Emission via a Freely Suspended Metallic Island. Nano Letters, 2010, 10, 615-619.	9.1	17

#	Article	IF	CITATIONS
109	Spontaneous Symmetry Breaking in Two Coupled Nanomechanical Electron Shuttles. Physical Review Letters, 2010, 105, 067204.	7.8	26
110	Single-Ion Channel Recordings on Quartz Substrates. IEEE Transactions on Nanobioscience, 2010, 9, 307-309.	3.3	11
111	Optimizing Functionality of Ion Channel Biosensing using Stochastic Resonance. Biophysical Journal, 2010, 98, 603a.	0.5	0
112	P1& \pm x2013; 21: Field electron emission under Coulomb blockade in a suspended metallic island., 2010,,.		1
113	Laser drilling of nano-pores in sandwiched thin glass membranes. Optics Express, 2009, 17, 10044.	3.4	23
114	Top-gated few-electron double quantum dot in Si/SiGe. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 520-523.	2.7	3
115	Shock waves in suspended low-dimensional electron gases. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1191-1193.	2.7	2
116	Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Physics, 2008, 4, 540-544.	16.7	148
117	An Ultrawideband Cross-Correlation Radiometer for Mesoscopic Experiments. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 2874-2879.	4.7	6
118	Mechanical single nanopillars and arrays as field emission devices. , 2008, , .		0
119	Nanopillar arrays on semiconductor membranes as electron emission amplifiers. Nanotechnology, 2008, 19, 095504.	2.6	12
120	Shock Waves in Nanomechanical Resonators. Physical Review Letters, 2008, 100, 026801.	7.8	14
121	A nanomechanical computer—exploring new avenues of computing. New Journal of Physics, 2007, 9, 241-241.	2.9	43
121	A nanomechanical computer—exploring new avenues of computing. New Journal of Physics, 2007, 9, 241-241. Field emission from a single nanomechanical pillar. Nanotechnology, 2007, 18, 065201.	2.9	43
	241-241.		
122	241-241. Field emission from a single nanomechanical pillar. Nanotechnology, 2007, 18, 065201.	2.6	14
122	241-241. Field emission from a single nanomechanical pillar. Nanotechnology, 2007, 18, 065201. Subthreshold field emission from thin silicon membranes. Applied Physics Letters, 2007, 91, 183506. Detection of coherent acoustic oscillations in a quantum electromechanical resonator. Applied	2.6 3.3	14

#	Article	IF	Citations
127	Nanoelectromechanical systems as single electron switches and field emitters., 2007,,.		O
128	Single-electron quantum dot in Siâ^•SiGe with integrated charge sensing. Applied Physics Letters, 2007, 91, .	3.3	72
129	Field emission from nanomechanically modulated electron islands. , 2007, , .		0
130	Magnetotransport in Nonplanar SiGe/Si Nanomembranes. IEEE Nanotechnology Magazine, 2007, 6, 446-450.	2.0	12
131	Fabrication of doped nanoâ€electromechanical systems. Physica Status Solidi - Rapid Research Letters, 2007, 1, 205-207.	2.4	5
132	Colloidal quantum dots produce current bursts in lipid bilayers. , 2006, , .		0
133	Observation of single-defect relaxation in a freely suspended nano resonator. Europhysics Letters, 2006, 76, 1207-1213.	2.0	11
134	Quantum dots in Si/SiGe 2DEGs with Schottky top-gated leads. New Journal of Physics, 2005, 7, 246-246.	2.9	28
135	Formation of microtubes from strained SiGe/Si heterostructures. New Journal of Physics, 2005, 7, 241-241.	2.9	13
136	Colloidal quantum dots initiating current bursts in lipid bilayers. Biosensors and Bioelectronics, 2005, 20, 2173-2176.	10.1	26
137	Nanomechanical Architecture of Strained Bilayer Thin Films: From Design Principles to Experimental Fabrication. Advanced Materials, 2005, 17, 2860-2864.	21.0	167
138	Stochastic Resonance of Artificial Ion Channels inserted in Small Membrane Patches. AIP Conference Proceedings, 2005, , .	0.4	1
139	Electron–nuclear spin transfer in quantum-dot networks. Nanotechnology, 2005, 16, S266-S272.	2.6	2
140	Current bursts in lipid bilayers initiated by colloidal quantum dots. Applied Physics Letters, 2005, 86, 083901.	3.3	15
141	Periodic Field Emission from an Isolated Nanoscale Electron Island. Physical Review Letters, 2004, 93, 186801.	7.8	40
142	Bonding silicon-on-insulator to glass wafers for integrated bio-electronic circuits. Applied Physics Letters, 2004, 85, 2370-2372.	3.3	24
143	Effects of low attenuation in a nanomechanical electron shuttle. Journal of Applied Physics, 2004, 96, 1757-1759.	2.5	11
144	Drastic enhancement of nanoelectromechanical-system fabrication yield using electron-beam deposition. Applied Physics Letters, 2004, 85, 157-159.	3.3	4

#	Article	IF	Citations
145	Silicon nanopillars for mechanical single-electron transport. Applied Physics Letters, 2004, 84, 4632-4634.	3.3	97
146	Fabrication and contacting of single Bi nanowires. Nanotechnology, 2004, 15, S201-S207.	2.6	56
147	A â€~bed of nails' on silicon. Nature, 2004, 432, 450-451.	27.8	14
148	Coulomb blockade in a silicon/silicon–germanium two-dimensional electron gas quantum dot. Applied Physics Letters, 2004, 84, 4047-4049.	3.3	55
149	On geometric potentials in quantum-electromechanical circuits. New Journal of Physics, 2004, 6, 33-33.	2.9	47
150	A quantum electromechanical device: the electromechanical single-electron pillar. Superlattices and Microstructures, 2003, 33, 397-403.	3.1	0
151	Phase coherent transport in two coupled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 76-82.	2.7	16
152	Electron–phonon interaction in freely suspended quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 99-100.	2.7	6
153	Dynamic control and modal analysis of coupled nano-mechanical resonators. Applied Physics Letters, 2003, 82, 3333-3335.	3.3	11
154	Fabrication and transport characterization of a primary thermometer formed by Coulomb islands in a suspended silicon nanowire. Applied Physics Letters, 2003, 82, 3773-3775.	3.3	15
155	Electrical characterization of electrochemically grown single copper nanowires. Applied Physics Letters, 2003, 82, 2139-2141.	3.3	164
156	In situ control of electron gas dimensionality in freely suspended semiconductor membranes. Applied Physics Letters, 2003, 82, 4160-4162.	3.3	17
157	Fabrication of coupled quantum dots for multiport access. Applied Physics Letters, 2003, 82, 1887-1889.	3.3	37
158	Mechanical gating of coupled nanoelectromechanical resonators operating at radio frequency. Applied Physics Letters, 2003, 82, 352-354.	3.3	20
159	Comparing schemes of displacement detection and subharmonic generation in nanomachined mechanical resonators. Nanotechnology, 2003, 14, 799-802.	2.6	7
160	Spin blockade in ground-state resonance of a quantum dot. Europhysics Letters, 2003, 62, 712-718.	2.0	36
161	Evidence of a nanomechanical resonator being driven into chaotic response via the Ruelle–Takens route. Applied Physics Letters, 2002, 81, 1884-1886.	3.3	44
162	Integrating suspended quantum dot circuits for applications in nanomechanics. Applied Physics Letters, 2002, 81, 280-282.	3.3	36

#	Article	IF	Citations
163	Electron-phonon interaction in suspended highly doped silicon nanowires. Nanotechnology, 2002, 13, 491-494.	2.6	31
164	Tunable coupled nanomechanical resonators for single-electron transport. New Journal of Physics, 2002, 4, 86-86.	2.9	30
165	Nanostructured silicon for studying fundamental aspects of nanomechanics. Journal of Physics Condensed Matter, 2002, 14, R905-R945.	1.8	44
166	Probing and Controlling the Bonds of an Artificial Molecule. Science, 2002, 297, 70-72.	12.6	224
167	Activity of single ion channel proteins detected with a planar microstructure. Applied Physics Letters, 2002, 81, 4865-4867.	3.3	109
168	Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip. Biophysical Journal, 2002, 82, 3056-3062.	0.5	344
169	Probing a single quantum dot by pulsed and continuous microwave radiation. Physica B: Condensed Matter, 2002, 314, 444-449.	2.7	1
170	Magnetotransport in freely suspended two-dimensional electron systems for integrated nanomechanical resonators. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 487-490.	2.7	8
171	Aharonov–Bohm oscillations for charge transport through two parallel quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 774-777.	2.7	8
172	Electron dynamics of a single quantum dot probed with wideband millimeter-wave spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 109-113.	2.7	1
173	Investigation of nano-electromechanical-systems using surface acoustic waves. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 473-476.	2.7	15
174	Single-electron effects in highly doped polysilicon nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 15, 60-64.	2.7	3
175	Coulomb blockade in silicon nanostructures. Progress in Quantum Electronics, 2001, 25, 97-138.	7.0	59
176	Nanoscale Lateral Field-Emission Triode Operating at Atmospheric Pressure. Advanced Materials, 2001, 13, 1780-1783.	21.0	31
177	Single-electron tunneling in highly doped silicon nanowires in a dual-gate configuration. Journal of Applied Physics, 2001, 89, 8159-8162.	2.5	41
178	Parametric frequency tuning of phase-locked nanoelectromechanical resonators. Applied Physics Letters, 2001, 79, 3521-3523.	3.3	16
179	Fabrication and integration possibilities of ultrasmall quantum dots in silicon-on-insulator material. Journal of Applied Physics, 2001, 90, 942-946.	2.5	12
180	Coherent Coupling of Two Quantum Dots Embedded in an Aharonov-Bohm Interferometer. Physical Review Letters, 2001, 87, 256802.	7.8	299

#	Article	IF	CITATIONS
181	Silicon-based nanoelectronics and nanoelectromechanics. Superlattices and Microstructures, 2000, 27, 597-601.	3.1	1
182	Mechanical properties of suspended structures at radio frequencies. Physica B: Condensed Matter, 2000, 280, 553-554.	2.7	3
183	Charge detection with nanomechanical resonators. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 821-827.	2.7	19
184	Single-electron tunneling in silicon nanostructures. Applied Physics A: Materials Science and Processing, 2000, 71, 357-365.	2.3	5
185	Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator. New Journal of Physics, 2000, 2, 2-2.	2.9	10
186	Mechanical mixing in nonlinear nanomechanical resonators. Applied Physics Letters, 2000, 77, 3102-3104.	3.3	83
187	Stable integration of isolated cell membrane patches in a nanomachined aperture. Applied Physics Letters, 2000, 77, 1218-1220.	3.3	73
188	Auf dem Weg zur "Quantenâ€Mechanikâ€i,• Nanomechanische Resonatoren dienen als schnelle Schalter und Frequenzgeber. Physik Journal, 2000, 56, 31-36.	0.1	3
189	Magnetotransport measurements on freely suspended two-dimensional electron gases. Physical Review B, 2000, 62, 17103-17107.	3.2	31
190	Nanomechanical resonators operating as charge detectors in the nonlinear regime. Europhysics Letters, 2000, 50, 101-106.	2.0	74
191	Nanomechanical vibrating wire resonator for phonon spectroscopy in liquid helium. Nanotechnology, 2000, $11,165-168$.	2.6	16
192	Single-crystalline silicon lift-off films for metal–oxide–semiconductor devices on arbitrary substrates. Applied Physics Letters, 2000, 77, 558-560.	3.3	8
193	Coulomb blockade in quasimetallic silicon-on-insulator nanowires. Applied Physics Letters, 1999, 75, 3704-3706.	3.3	62
194	Anomalous Kondo Effect in a Quantum Dot at Nonzero Bias. Physical Review Letters, 1999, 83, 804-807.	7.8	228
195	Nanomechanical resonators operating at radio frequencies. Physica B: Condensed Matter, 1999, 272, 575-577.	2.7	6
196	Nano-ploughed Josephson junctions as on-chip radiation sources. Superlattices and Microstructures, 1999, 25, 785-795.	3.1	9
197	Suspending highly doped silicon-on-insulator wires for applications in nanomechanics. Nanotechnology, 1999, 10, 418-420.	2.6	38
198	Coupled quantum dots: manifestation of an artificial molecule. Superlattices and Microstructures, 1998, 23, 1255-1264.	3.1	9

#	Article	IF	CITATIONS
199	Probing the coherent transport through coupled quantum dots. Superlattices and Microstructures, 1998, 23, 1265-1271.	3.1	0
200	Formation of a Coherent Mode in a Double Quantum Dot. Physical Review Letters, 1998, 80, 4032-4035.	7.8	217
201	Josephson junctions defined by a nanoplough. Applied Physics Letters, 1998, 73, 2051-2053.	3.3	54
202	Complex Broadband Millimeter Wave Response of a Double Quantum Dot: Rabi Oscillations in an Artificial Molecule. Physical Review Letters, 1998, 81, 689-692.	7.8	92
203	Electron-spin resonance in a quantum dot. Physical Review B, 1998, 57, R12685-R12688.	3.2	18
204	A mechanically flexible tunneling contact operating at radio frequencies. Applied Physics Letters, 1998, 73, 3751-3753.	3.3	71
205	Single-electron tunneling through a double quantum dot: The artificial molecule. Physical Review B, 1996, 53, 7899-7902.	3.2	168
206	Single-electron transistors with quantum dots. Physica B: Condensed Matter, 1996, 227, 82-86.	2.7	5
207	Critical current phase diagram of the heavy-fermion superconductor UPt3. Journal of Low Temperature Physics, 1996, 102, 349-358.	1.4	2
208	Magnetic Focusing of Composite Fermions through Arrays of Cavities. Physical Review Letters, 1996, 77, 2272-2275.	7.8	127
209	Evidence for quasi-classical transport of composite fermions in an inhomogeneous effective magnetic field. Semiconductor Science and Technology, 1996, 11, 1482-1487.	2.0	2
210	Tunnelling through quantum dots. Semiconductor Science and Technology, 1996, 11, 1506-1511.	2.0	9
211	Transport spectroscopy in single-electron tunneling transistors. Nanotechnology, 1996, 7, 381-384.	2.6	3
212	Dispersive transition of transverse ultrasound in the paramagnetic phase of CeAl2. Journal of Low Temperature Physics, 1995, 99, 71-79.	1.4	2
213	Transport spectroscopy of single and coupled quantum-dot systems. Physica B: Condensed Matter, 1995, 212, 207-212.	2.7	7
214	Photonâ€assisted tunneling through a quantum dot at high microwave frequencies. Applied Physics Letters, 1995, 67, 3924-3926.	3.3	126
215	Quantum-dot ground states in a magnetic field studied by single-electron tunneling spectroscopy on double-barrier heterostructures. Physical Review B, 1995, 51, 5570-5573.	3.2	114
216	Sound propagation in heavy fermion compounds. Journal of Magnetism and Magnetic Materials, 1992, 108, 109-110.	2.3	9

#	Article	IF	CITATIONS
217	Critical current and vortex lattice in superconducting UPt3. Journal of Magnetism and Magnetic Materials, 1992, 108, 111-112.	2.3	5