Ronggui Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4120688/ronggui-yang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 129 227 17,533 h-index g-index citations papers 8.5 21,318 251 7.15 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
227	New Directions for Low-Dimensional Thermoelectric Materials. <i>Advanced Materials</i> , 2007 , 19, 1043-105	324	2967
226	Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. <i>Science</i> , 2017 , 355, 1062-1066	33.3	834
225	Highly efficient solar vapour generation via hierarchically nanostructured gels. <i>Nature Nanotechnology</i> , 2018 , 13, 489-495	28.7	825
224	Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. <i>Nature Materials</i> , 2015 , 14, 622-7	27	494
223	The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nature Materials, 2012, 11, 759-63	27	461
222	A radiative cooling structural material. <i>Science</i> , 2019 , 364, 760-763	33.3	419
221	Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. <i>Nature Materials</i> , 2010 , 9, 26-30	27	325
220	Strain effects on the thermal conductivity of nanostructures. <i>Physical Review B</i> , 2010 , 81,	3.3	320
219	Thermal conductivity of polymers and polymer nanocomposites. <i>Materials Science and Engineering Reports</i> , 2018 , 132, 1-22	30.9	318
218	Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1707134	15.6	254
217	Thermal conductivity modeling of periodic two-dimensional nanocomposites. <i>Physical Review B</i> , 2004 , 69,	3.3	251
216	Bending rigidity and Gaussian bending stiffness of single-layered graphene. <i>Nano Letters</i> , 2013 , 13, 26-3	30 1.5	250
215	Phonon transport in single-layer transition metal dichalcogenides: A first-principles study. <i>Applied Physics Letters</i> , 2014 , 105, 131903	3.4	229
214	Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. <i>Journal of Heat Transfer</i> , 2008 , 130, 042410	1.8	229
213	Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2016 , 138,	2	228
212	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1104-1112	9.5	227
211	Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. <i>Nano Letters</i> , 2012 , 12, 655-60	11.5	212

(2002-2019)

210	Radiative sky cooling: Fundamental principles, materials, and applications. <i>Applied Physics Reviews</i> , 2019 , 6, 021306	17.3	211
209	Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 4593-601	9.5	207
208	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. <i>Science Advances</i> , 2018 , 4, eaar3724	14.3	204
207	Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. <i>Physical Review B</i> , 2005 , 72,	3.3	199
206	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. <i>Nature Materials</i> , 2019 , 18, 608-613	27	187
205	Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. <i>Joule</i> , 2019 , 3, 111-123	27.8	184
204	High-Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. <i>Advanced Energy Materials</i> , 2018 , 8, 1701616	21.8	174
203	First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. <i>Journal of Applied Physics</i> , 2015 , 117, 025102	2.5	158
202	Thermal conductivity modeling of core-shell and tubular nanowires. <i>Nano Letters</i> , 2005 , 5, 1111-5	11.5	152
201	Colloquium: Phononic thermal properties of two-dimensional materials. <i>Reviews of Modern Physics</i> , 2018 , 90,	40.5	141
200	Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires. <i>Nano Letters</i> , 2012 , 12, 3385-90	11.5	138
199	Length-dependent thermal conductivity of single extended polymer chains. <i>Physical Review B</i> , 2012 , 86,	3.3	132
198	Hydrophobic copper nanowires for enhancing condensation heat transfer. <i>Nano Energy</i> , 2017 , 33, 177-1	8:3 7.1	129
197	A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4846-51	11.5	127
196	Tuning the thermal conductivity of polymers with mechanical strains. <i>Physical Review B</i> , 2010 , 81,	3.3	126
195	Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation. <i>Journal of Heat Transfer</i> , 2005 , 127, 298-2005.	 306	120
194	Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer. <i>Joule</i> , 2018 , 2, 269-279	27.8	118
193	Supercooling of Peltier cooler using a current pulse. <i>Journal of Applied Physics</i> , 2002 , 92, 1564-1569	2.5	115

192	Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. <i>Journal of Applied Physics</i> , 2018 , 124, 161103	2.5	114
191	Mechanics and Mechanically Tunable Band Gap in Single-Layer Hexagonal Boron-Nitride. <i>Materials Research Letters</i> , 2013 , 1, 200-206	7.4	113
190	Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. <i>Journal of Applied Physics</i> , 2010 , 108, 094315	2.5	111
189	Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. <i>Science</i> , 2020 , 370, 786-791	33.3	110
188	Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. <i>Nature Communications</i> , 2017 , 8, 1024	17.4	109
187	Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX (M = Mo, W and X = S, Se) using Time-Domain Thermoreflectance. <i>Advanced Materials</i> , 2017 , 29, 1701068	24	107
186	Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. <i>Physical Review B</i> , 2012 , 86,	3.3	97
185	Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. <i>Polymer Testing</i> , 2017 , 57, 101-106	4.5	96
184	Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. <i>Review of Scientific Instruments</i> , 2013 , 84, 034902	1.7	96
183	Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays. <i>Nano Energy</i> , 2017 , 38, 59-65	17.1	94
182	The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates. <i>Journal of Applied Physics</i> , 2009 , 105, 093527	2.5	94
181	Transient cooling of thermoelectric coolers and its applications for microdevices. <i>Energy Conversion and Management</i> , 2005 , 46, 1407-1421	10.6	94
180	Layer thickness-dependent phonon properties and thermal conductivity of MoS2. <i>Journal of Applied Physics</i> , 2016 , 119, 085106	2.5	89
179	Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond. <i>Joule</i> , 2018 , 2, 2307-2347	27.8	86
178	Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. <i>Applied Physics Letters</i> , 2016 , 108, 063902	3.4	84
177	Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films. <i>Nano Letters</i> , 2013 , 13, 5594-9	11.5	82
176	Semiclassical model for thermoelectric transport in nanocomposites. <i>Physical Review B</i> , 2010 , 82,	3.3	82
175	Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44911-44921	9.5	77

(2018-2017)

174	Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2017 , 9, 13770-13777	9.5	75
173	Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA. <i>Applied Energy</i> , 2018 , 224, 371-381	10.7	75
172	Flexible hybrid semiconductors with low thermal conductivity: the role of organic diamines. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7871-4	16.4	71
171	Stable high areal capacity lithium-ion battery anodes based on three-dimensional Nißn nanowire networks. <i>Journal of Power Sources</i> , 2012 , 211, 46-51	8.9	70
170	Micromembrane-enhanced capillary evaporation. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 64, 1101-1108	4.9	69
169	Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. <i>Review of Scientific Instruments</i> , 2017 , 88, 074901	1.7	67
168	On the thermal conductivity of particulate nanocomposites. <i>Applied Physics Letters</i> , 2011 , 98, 233111	3.4	67
167	High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. <i>Science Advances</i> , 2021 , 7,	14.3	67
166	Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity. <i>Nano Letters</i> , 2017 , 17, 179-185	11.5	65
165	Temperature Dependence of Anisotropic Thermal-Conductivity Tensor of Bulk Black Phosphorus. <i>Advanced Materials</i> , 2017 , 29, 1603297	24	65
164	Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600040	6.4	64
163	Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 89, 1297-1315	4.9	63
162	Optimal bandwidth for high efficiency thermoelectrics. <i>Physical Review Letters</i> , 2011 , 107, 226601	7.4	63
161	. Journal of Microelectromechanical Systems, 2011 , 20, 410-417	2.5	63
160	Personal thermal management using portable thermoelectrics for potential building energy saving. <i>Applied Energy</i> , 2018 , 218, 282-291	10.7	58
159	Selection of polymers with functional groups for daytime radiative cooling. <i>Materials Today Physics</i> , 2019 , 10, 100127	8	58
158	Scalable thermochromic smart windows with passive radiative cooling regulation <i>Science</i> , 2021 , 374, 1501-1504	33.3	58
157	Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures. <i>Nano Energy</i> , 2018 , 51, 373-382	17.1	55

156	A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. <i>Energy Conversion and Management</i> , 2019 , 186, 586-596	10.6	54
155	Thermoelectric Properties of Molecular Nanowires. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24418-24	14,288	54
154	Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4744-4750	6.4	50
153	Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. <i>Materials Today Physics</i> , 2017 , 3, 70-75	8	50
152	Flat flexible polymer heat pipes. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 015001	2	50
151	Thermal conductivity modeling of compacted nanowire composites. <i>Journal of Applied Physics</i> , 2007 , 101, 054320	2.5	50
150	A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. <i>Advanced Functional Materials</i> , 2020 , 30, 1907511	15.6	50
149	Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS2. <i>Nano Letters</i> , 2015 , 15, 6302-8	11.5	49
148	Nanomechanics of graphene. <i>National Science Review</i> , 2019 , 6, 324-348	10.8	49
147	Three-dimensional anisotropic thermal conductivity tensor of single crystalline EGa2O3. <i>Applied Physics Letters</i> , 2018 , 113, 232105	3.4	49
146	High-frequency surface acoustic wave propagation in nanostructures characterized by coherent extreme ultraviolet beams. <i>Applied Physics Letters</i> , 2009 , 94, 093103	3.4	48
145	Hydrophobic nanostructured wood membrane for thermally efficient distillation. <i>Science Advances</i> , 2019 , 5, eaaw3203	14.3	47
144	Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. <i>Applied Physics Letters</i> , 2007 , 90, 263105	3.4	46
143	From 1D chain to 3D network: a new family of inorganic-organic hybrid semiconductors MO3(L)(x) (M = Mo, W; L = organic linker) built on perovskite-like structure modules. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17401-7	16.4	45
142	On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. <i>Carbon</i> , 2017 , 119, 278-286	10.4	44
141	Stable planar single-layer hexagonal silicene under tensile strain and its anomalous Poisson ß ratio. <i>Applied Physics Letters</i> , 2014 , 104, 081902	3.4	44
140	Thermal Conductivity during Phase Transitions. <i>Advanced Materials</i> , 2019 , 31, e1806518	24	43
139	Electroplating to visualize defects in Al2O3 thin films grown using atomic layer deposition. <i>Thin Solid Films</i> , 2009 , 517, 3269-3272	2.2	42

(2013-2015)

138	A three-dimensional carbon nano-network for high performance lithium ion batteries. <i>Nano Energy</i> , 2015 , 11, 500-509	17.1	41
137	Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. <i>Nano Energy</i> , 2018 , 48, 266-274	17.1	40
136	The effect of the electron-phonon coupling on the effective thermal conductivity of metal-nonmetal multilayers. <i>Journal of Applied Physics</i> , 2011 , 109, 094310	2.5	40
135	Anisotropic thermal transport in bulk hexagonal boron nitride. <i>Physical Review Materials</i> , 2018 , 2,	3.2	39
134	PHONON TRANSPORT AND THERMAL CONDUCTIVITY IN TWO-DIMENSIONAL MATERIALS. <i>Annual Review of Heat Transfer</i> , 2016 , 19, 1-65	2.7	39
133	Investigation of the defect density in ultra-thin Al2O3 films grown using atomic layer deposition. <i>Surface and Coatings Technology</i> , 2011 , 205, 3334-3339	4.4	38
132	Modified pulse operation of thermoelectric coolers for building cooling applications. <i>Energy Conversion and Management</i> , 2017 , 140, 145-156	10.6	37
131	Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model. <i>Applied Energy</i> , 2019 , 248, 589-599	10.7	37
130	Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes. <i>Nano Energy</i> , 2013 , 2, 943-950	17.1	37
129	Generation and control of ultrashort-wavelength two-dimensional surface acoustic waves at nanoscale interfaces. <i>Physical Review B</i> , 2012 , 85,	3.3	37
128	Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. <i>Energy and Buildings</i> , 2019 , 203, 109453	7	35
127	Thermal performance of a flat polymer heat pipe heat spreader under high acceleration. <i>Journal of Micromechanics and Microengineering</i> , 2012 , 22, 045018	2	35
126	Enhancing NiBn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces. <i>Journal of Power Sources</i> , 2011 , 196, 10207-10212	8.9	35
125	Multistage thermoelectric microcoolers. <i>Journal of Applied Physics</i> , 2004 , 95, 8226-8232	2.5	35
124	High temperature thermal management with boron nitride nanosheets. <i>Nanoscale</i> , 2017 , 10, 167-173	7.7	35
123	Development of a single-phase thermosiphon for cold collection and storage of radiative cooling. <i>Applied Energy</i> , 2017 , 205, 1260-1269	10.7	34
122	Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. <i>Computers and Fluids</i> , 2012 , 67, 104-114	2.8	34
121	Capillary evaporation on micromembrane-enhanced microchannel wicks with atomic layer deposited silica. <i>Applied Physics Letters</i> , 2013 , 103, 151602	3.4	34

120	Thermal conductivity model for nanofiber networks. <i>Journal of Applied Physics</i> , 2018 , 123, 085103	2.5	33
119	Radiative sky cooling-assisted thermoelectric cooling system for building applications. <i>Energy</i> , 2020 , 190, 116322	7.9	33
118	Sustaining enhanced condensation on hierarchical mesh-covered surfaces. <i>National Science Review</i> , 2018 , 5, 878-887	10.8	33
117	Size effect on the thermal conductivity of ultrathin polystyrene films. <i>Applied Physics Letters</i> , 2014 , 104, 153110	3.4	32
116	Optimized Silicon Electrode Architecture, Interface, and Microgeometry for Next-Generation Lithium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 188-93	24	32
115	Thermal resistance matching for thermoelectric cooling systems. <i>Energy Conversion and Management</i> , 2018 , 169, 186-193	10.6	32
114	Thermal transport across carbon nanotubes connected by molecular linkers. <i>Carbon</i> , 2012 , 50, 1063-107	70 0.4	31
113	Thermochromic smart windows with highly regulated radiative cooling and solar transmission. <i>Nano Energy</i> , 2021 , 89, 106440	17.1	30
112	Thin Flexible Thermal Ground Planes: Fabrication and Scaling Characterization. <i>Journal of Microelectromechanical Systems</i> , 2015 , 24, 2040-2048	2.5	29
111	An Energy-Efficient, Wood-Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. <i>Small Methods</i> , 2020 , 4, 1900747	12.8	28
110	Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. <i>Applied Surface Science</i> , 2012 , 258, 8649-8655	6.7	27
109	Fluorescent tags to visualize defects in Al2O3 thin films grown using atomic layer deposition. <i>Thin Solid Films</i> , 2009 , 517, 6794-6797	2.2	27
108	A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. Journal of Applied Physics, 2013 , 114, 064306	2.5	25
107	Microfabricated ultra-thin all-polymer thermal ground planes. Science Bulletin, 2015, 60, 701-706	10.6	25
106	A constitutive equation for nano-to-macro-scale heat conduction based on the Boltzmann transport equation. <i>Journal of Applied Physics</i> , 2011 , 109, 084319	2.5	25
105	Thermoelectric Transport in Nanocomposites. <i>Materials</i> , 2017 , 10,	3.5	24
104	Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. <i>Energy and Buildings</i> , 2020 , 226, 110374	7	24
103	Diffused Lattice Vibration and Ultralow Thermal Conductivity in the Binary Ln-Nb-O Oxide System. <i>Advanced Materials</i> , 2019 , 31, e1808222	24	23

(2020-2015)

102	Steady state and modulated heat conduction in layered systems predicted by the analytical solution of the phonon Boltzmann transport equation. <i>Journal of Applied Physics</i> , 2015 , 118, 075103	2.5	23
101	Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon. <i>Materials Today Physics</i> , 2019 , 10, 100140	8	23
100	A low band gap iron sulfide hybrid semiconductor with unique 2D [Fe(16)S(20)](8-) layer and reduced thermal conductivity. <i>Chemical Communications</i> , 2010 , 46, 1649-51	5.8	23
99	Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 69, 493-505	4.9	22
98	ZT > 0.1 Electron-Carrying Polymer Thermoelectric Composites with In Situ SnCl Microstructure Growth. <i>Advanced Science</i> , 2015 , 2, 1500015	13.6	22
97	Temperature effect on the phonon dispersion stability of zirconium by machine learning driven atomistic simulations. <i>Physical Review B</i> , 2018 , 98,	3.3	22
96	Thermal conductivity modeling of hybrid organic-inorganic crystals and superlattices. <i>Nano Energy</i> , 2017 , 41, 394-407	17.1	21
95	Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x. <i>Applied Physics Letters</i> , 2018 , 112, 241901	3.4	21
94	A model for the effective thermal conductivity of metal-nonmetal particulate composites. <i>Journal of Applied Physics</i> , 2012 , 111, 044319	2.5	21
93	In-situ inspection of cracking in atomic-layer-deposited barrier films on surface and in buried structures. <i>Thin Solid Films</i> , 2011 , 520, 251-257	2.2	20
92	Multiscale Thermal Analysis for Nanometer-Scale Integrated Circuits. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 2009 , 28, 860-873	2.5	20
91	Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 140, 173-186	4.9	19
90	Interfacial thermal conductance across metal-insulator/semiconductor interfaces due to surface states. <i>Physical Review B</i> , 2016 , 93,	3.3	19
89	Super-stretchable borophene. <i>Europhysics Letters</i> , 2016 , 116, 36001	1.6	19
88	Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure. <i>Journal of Microelectromechanical Systems</i> , 2016 , 25, 842-844	2.5	19
87	A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method. <i>Review of Scientific Instruments</i> , 2018 , 89, 094902	1.7	19
86	Biphilic nanoporous surfaces enabled exceptional drag reduction and capillary evaporation enhancement. <i>Applied Physics Letters</i> , 2014 , 105, 191611	3.4	18
85	A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. <i>Journal of Thermal Analysis and Calorimetry</i> , 2020 , 140, 1003-1014	4.1	18

84	Size-dependent phonon transmission across dissimilar material interfaces. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 155302	1.8	17
83	Quantum and classical thermoelectric transport in quantum dot nanocomposites. <i>Journal of Applied Physics</i> , 2011 , 110, 084317	2.5	17
82	Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency. <i>Applied Energy</i> , 2021 , 287, 116573	10.7	17
81	Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. <i>Energy and Built Environment</i> , 2021 , 2, 214-222	6.3	17
80	Modelling study of the low-pump-power demand constructal T-shaped pipe network for a large scale radiative cooled-cold storage system. <i>Applied Thermal Engineering</i> , 2017 , 127, 1564-1573	5.8	16
79	Ballistic thermoelectric transport in structured nanowires. <i>New Journal of Physics</i> , 2014 , 16, 065018	2.9	16
78	Hierarchical polymer patterns driven by capillary instabilities at mobile and corrugated polymer polymer interfaces. <i>Soft Matter</i> , 2010 , 6, 4900	3.6	16
77	Thermoelectric transport in strongly correlated quantum dot nanocomposites. <i>Physical Review B</i> , 2010 , 82,	3.3	16
76	Phonon transport in single-layer Mo1\delta\wxS2 alloy embedded with WS2 nanodomains. <i>Physical Review B</i> , 2016 , 94,	3.3	15
75	Thermoelectric Transport Across Nanoscale PolymerBemiconductorPolymer Junctions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 24716-24725	3.8	15
74	Phonon transmission across Mg2Si/Mg2Si1\(\text{MS}\) Snx interfaces: A first-principles-based atomistic Green\(\text{R}\) function study. <i>Physical Review B</i> , 2015 , 91,	3.3	15
73	Equilibrium molecular dynamics simulations for the thermal conductivity of Si/Ge nanocomposites. <i>Journal of Applied Physics</i> , 2013 , 113, 104306	2.5	15
72	Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits. <i>Applied Energy</i> , 2020 , 278, 115663	10.7	15
71	Ballistic thermoelectricity in double-bend nanowires. <i>Applied Physics Letters</i> , 2011 , 98, 173107	3.4	14
70	Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material. <i>Applied Physics Letters</i> , 2011 , 98, 222110	3.4	14
69	Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material. <i>Joule</i> , 2022 , 6, 193-204	27.8	14
68	Anisotropic Thermal Transport in OrganicIhorganic Hybrid Crystal EZnTe(en)0.5. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 28300-28308	3.8	13
67	Curvature effect on the phonon thermal conductivity of dielectric nanowires. <i>Journal of Applied Physics</i> , 2009 , 105, 104313	2.5	13

66	Thermal conductivity model for nanoporous thin films. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2018 , 97, 277-281	3	13
65	The linear-dependence of adhesion strength and adhesion range on temperature in soft membranes. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 132, 103697	5	12
64	Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. <i>Nature Food</i> , 2021 , 2, 434-441	14.4	12
63	Reduced-scale hot box method for thermal characterization of window insulation materials. <i>Applied Thermal Engineering</i> , 2019 , 160, 114026	5.8	11
62	Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites. <i>Physical Review B</i> , 2012 , 85,	3.3	11
61	Machine learning for predicting thermal transport properties of solids. <i>Materials Science and Engineering Reports</i> , 2021 , 146, 100642	30.9	11
60	Hybrid radiation modeling for multi-phase solar-thermal reactor systems operated at high-temperature. <i>Solar Energy</i> , 2016 , 140, 130-140	6.8	10
59	Flexible Thermal Ground Planes Fabricated With Printed Circuit Board Technology. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2017 , 139,	2	9
58	Effect of a metallic coating on the thermal conductivity of carbon nanofiberdielectric matrix composites. <i>Composites Science and Technology</i> , 2015 , 109, 18-24	8.6	9
57	Radiative sky cooling potential maps of China based on atmospheric spectral emissivity. <i>Solar Energy</i> , 2021 , 218, 195-210	6.8	9
56	Capillary rupture of suspended polymer concentric rings. Soft Matter, 2015, 11, 7264-9	3.6	8
55	Utilization of size-tunable hollow silica nanospheres for building thermal insulation applications. <i>Journal of Building Engineering</i> , 2020 , 31, 101336	5.2	8
54	Effect of the Electron Phonon Coupling on the Effective Thermal Conductivity of Metallic Bilayers. <i>International Journal of Thermophysics</i> , 2013 , 34, 1817-1827	2.1	8
53	Inhomogeneous thermal conductivity enhances thermoelectric cooling. <i>AIP Advances</i> , 2014 , 4, 124501	1.5	8
52	Layered Hybrid Selenoantimonates with Reduced Thermal Conductivity. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2012 , 638, 2604-2609	1.3	7
51	Remarkable thermal conductivity reduction in metal-semiconductor nanocomposites. <i>Applied Physics Letters</i> , 2013 , 103, 083115	3.4	6
50	An electrohydrodynamics model for non-equilibrium electron and phonon transport in metal films after ultra-short pulse laser heating. <i>European Physical Journal B</i> , 2015 , 88, 1	1.2	6
49	Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed. <i>Applied Physics Letters</i> , 2015 , 106, 153102	3.4	5

48	Effective Thermal Conductivity of Metal Dielectric Composites at the Non-dilute Limit. <i>International Journal of Thermophysics</i> , 2012 , 33, 2118-2124	2.1	5
47	NANOCOMPOSITES AS HIGH EFFICIENCY THERMOELECTRIC MATERIALS. <i>Annual Review of Nano Research</i> , 2009 , 441-486		5
46	Thermal Conductivity of Particulate Nanocomposites. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2014 , 93-139	0.3	5
45	Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range Small, 2022, e220	2400	5
44	Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection. <i>ACS Applied Materials & Distributed & Distr</i>	9.5	4
43	Black Phosphorus: Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus (Adv. Electron. Mater. 5/2016). <i>Advanced Electronic Materials</i> , 2016 , 2,	6.4	4
42	Characterization of Hybrid-Wicked Copper Heat Pipe 2011 ,		4
41	Atomic layer deposition enabled interconnect technology for vertical nanowire arrays. <i>Sensors and Actuators A: Physical</i> , 2011 , 165, 107-114	3.9	4
40	On-Demand Solar and Thermal Radiation Management Based on Switchable Interwoven Surfaces. <i>ACS Energy Letters</i> , 2022 , 7, 1758-1763	20.1	4
39	Electronic band structure of carbon honeycombs. <i>Materials Today Physics</i> , 2018 , 5, 72-77	8	3
38	Effect of gas rarefaction on the performance of submicron fins. <i>Applied Physics Letters</i> , 2009 , 94, 14310	63.4	3
37	Nonlocal formulation of the Reynolds equation for rarefied gas flow with steep pressure variation. <i>Journal of Applied Physics</i> , 2010 , 107, 104316	2.5	3
36	Geometric Effects on the Transient Cooling of Thermoelectric Coolers. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		3
35	Ballistic-diffusive equations for multidimensional nanoscale heat conduction 2002,		3
34	Electrostatic interaction determines thermal conductivity anisotropy of Bi2O2Se. <i>Cell Reports Physical Science</i> , 2021 , 2, 100624	6.1	3
33	Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate. <i>Applied Energy</i> , 2022 , 306, 118096	10.7	3
32	An Extended Finite Element Method for the Analysis of Submicron Heat Transfer Phenomena. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2011 , 195-212	0.3	3
31	Nano Heat Pump Based on Reverse Thermo-osmosis Effect. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 9856-9861	6.4	3

(2021-2021)

30	Harnessing Reversible Wetting Transition to Sweep Contaminated Superhydrophobic Surfaces. <i>Langmuir</i> , 2021 , 37, 3929-3938	4	3
29	Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover. <i>Applied Thermal Engineering</i> , 2021 , 190, 116776	5.8	3
28	Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer. <i>IScience</i> , 2021 , 24, 102531	6.1	3
27	Reduction of water consumption in thermal power plants with radiative sky cooling. <i>Applied Energy</i> , 2021 , 302, 117515	10.7	3
26	Integrated electroplated heat spreaders for high power semiconductor lasers. <i>Journal of Applied Physics</i> , 2008 , 104, 064907	2.5	2
25	Effects of electron-phonon intervalley scattering and band non-parabolicity on electron transport properties of high-temperature phase SnSe: An ab initio study. <i>Materials Today Physics</i> , 2022 , 22, 10059	2 ⁸	2
24	Confinement effect on thermopower of electrolytes. <i>Materials Today Physics</i> , 2022 , 23, 100627	8	2
23	A New Regime of Nanoscale Thermal Transport: Collective Diffusion Counteracts Dissipation Inefficiency. <i>Springer Proceedings in Physics</i> , 2015 , 341-344	0.2	2
22	Thermal conductance of nanostructured interfaces from Monte Carlo simulations with ab initio-based phonon properties. <i>Journal of Applied Physics</i> , 2021 , 129, 215105	2.5	2
21	A CPFD simulation on the particle flow characteristics in a packed moving bed solar receiver with an added insert. <i>Solar Energy</i> , 2021 , 224, 1144-1159	6.8	2
20	Performance of an integrated greenhouse equipped with Light-Splitting material and an HDH desalination unit. <i>Energy Conversion and Management: X</i> , 2020 , 7, 100045	2.5	1
19	Thermal management of vertical gallium nitride nanowire arrays: Cooling design and tip temperature measurement 2010 ,		1
18	Monte Carlo simulation of thermoelectric properties in nanocomposites 2005,		1
17	Large Scale Random Metamaterial for Effective Day-time Radiative Cooling 2017,		1
16	Significant suppression of phonon transport in polar semiconductors owing to electron-phonon-induced dipole coupling: An effect of breaking centrosymmetry. <i>Materials Today Physics</i> , 2022 , 22, 100598	8	1
15	Passive sub-ambient cooling: radiative cooling versus evaporative cooling. <i>Applied Thermal Engineering</i> , 2022 , 202, 117909	5.8	1
14	Performance evaluation of radiative cooling for commercial-scale warehouse. <i>Materials Today Energy</i> , 2022 , 24, 100927	7	1
13	Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand. <i>Atmosphere</i> , 2021 , 12, 1379	2.7	1

12	Machine learning-based data processing technique for time-domain thermoreflectance (TDTR) measurements. <i>Journal of Applied Physics</i> , 2021 , 130, 084901	2.5	1
11	Spectral decoupling of cooperative emissivity in silica-polymer metamaterials for radiative cooling <i>Optics Letters</i> , 2022 , 47, 2506-2509	3	1
10	Dynamic glazing with switchable solar reflectance for radiative cooling and solar heating. <i>Cell Reports Physical Science</i> , 2022 , 3, 100853	6.1	1
9	Theoretical analysis of bubble nucleation in liquid film boiling. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 192, 122911	4.9	1
8	Liquid film boiling enabled ultra-high conductance and high flux heat spreaders. <i>Cell Reports Physical Science</i> , 2022 , 100746	6.1	О
7	A novel thermal comfort and energy saving evaluation model for radiative cooling and heating textiles. <i>Energy and Buildings</i> , 2022 , 258, 111842	7	O
6	A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 191, 122849	4.9	О
5	P-106: Real-Time Inspection of a Moisture Barrier Film Buried by a Protective Layer for Flexible Displays. <i>Digest of Technical Papers SID International Symposium</i> , 2010 , 41, 1643	0.5	
4	12.3: Defect Visualization of Atomic Layer Deposition Enabled Polymer Barriers Using Fluorescent Tags. <i>Digest of Technical Papers SID International Symposium</i> , 2008 , 39, 143	0.5	
3	Theoretical Thermal Conductivity of Periodic Two-Dimensional Nanocomposites. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 194		
2	Thermoelectric Modeling of Si-Si1-xGex Ordered Nanowire Composites. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		
1	Nanoscale Heat Transport Probed with Ultrafast Soft X-Rays. <i>Springer Series in Chemical Physics</i> , 2009 , 149-151	0.3	