Verena van der Heide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120561/publications.pdf

Version: 2024-02-01

18 papers 2,098 citations

840776 11 h-index 18 g-index

23 all docs

23 docs citations

23 times ranked 6808 citing authors

#	Article	IF	CITATIONS
1	Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Reports, 2022, 38, 110508.	6.4	36
2	Chemokine Signatures of Pathogen-Specific T Cells II: Memory T Cells in Acute and Chronic Infection. Journal of Immunology, 2020, 205, 2188-2206.	0.8	7
3	Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metabolism, 2020, 32, 1041-1051.e6.	16.2	135
4	Sampling the host response to SARS-CoV-2 in hospitals under siege. Nature Medicine, 2020, 26, 1157-1158.	30.7	27
5	Lentiviral-Vector-Based Dendritic Cell Vaccine Synergizes with Checkpoint Blockade to Clear Chronic Viral Infection. Molecular Therapy, 2020, 28, 1795-1805.	8. 2	4
6	Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. Journal of Immunology, 2020, 205, 2169-2187.	0.8	30
7	Shared CD8+ T cell receptors for SARS-CoV-2. Nature Reviews Immunology, 2020, 20, 591-591.	22.7	5
8	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	14.3	1,387
9	Innate T cells in COVID-19: friend or foe?. Nature Reviews Immunology, 2020, 20, 407-407.	22.7	0
10	SARS-CoV-2 cross-reactivity in healthy donors. Nature Reviews Immunology, 2020, 20, 408-408.	22.7	20
11	Neutralizing antibody response in mild COVID-19. Nature Reviews Immunology, 2020, 20, 352-352.	22.7	27
12	Aging boosts antiviral CD8+T cell memory through improved engagement of diversified recall response determinants. PLoS Pathogens, 2019, 15, e1008144.	4.7	3
13	Aging of Antiviral CD8+ Memory T Cells Fosters Increased Survival, Metabolic Adaptations, and Lymphoid Tissue Homing. Journal of Immunology, 2019, 202, 460-475.	0.8	23
14	Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature Medicine, 2017, 23, 623-630.	30.7	282
15	Down-regulation of MicroRNA-31 in CD4+ T Cells Contributes to Immunosuppression in Human Sepsis by Promoting TH2 Skewing. Anesthesiology, 2016, 124, 908-922.	2.5	34
16	CD28 days later: Resurrecting costimulation for CD8 ⁺ memory T cells. European Journal of Immunology, 2016, 46, 1587-1591.	2.9	13
17	MicroRNAâ€146a controls Th1â€cell differentiation of human CD4 ⁺ T lymphocytes by targeting PRKCîµ. European Journal of Immunology, 2015, 45, 260-272.	2.9	48
18	Chronic Granulomatous Disease in an Adult Recognized by an Invasive Aspergillosis. American Journal of the Medical Sciences, 2012, 343, 174-176.	1.1	6