
Takeshi Yamanobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In-Situ</i> X-Ray Analyses of Structural Change During Drawing and Shrinking of Linear Low-Density Polyethylene Film. Journal of Robotics and Mechatronics, 2022, 34, 310-315.	1.0	2
2	Actuation mechanism of drawn polyethylene evaluated by structural change during cyclic stretching/shrinking. Sensors and Actuators A: Physical, 2021, 323, 112634.	4.1	7
3	Structure and physical properties of poly(lactic acid) and cyclodextrin composite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 117-126.	1.6	7
4	Effect of Kneading and Composition on the Structure and Physical Properties of EPDM/PP Thermoplastic Elastomer. Kobunshi Ronbunshu, 2018, 75, 337-346.	0.2	2
5	In Situ Analysis of Melt-Drawing Behavior of Ultrahigh Molecular Weight Polyethylene Films with Different Molecular Weights: Roles of Entanglements on Oriented Crystallization. Journal of Physical Chemistry B, 2015, 119, 5062-5070.	2.6	23
6	<i>In Situ</i> NMR Measurement of Novel Silicone Elastomer Obtained by Cross-Linking of Silicones Having Phenylene Backbone and Hyperbranched Molecular Architectures. Macromolecules, 2014, 47, 888-896.	4.8	7
7	Structure and molecular mobility of nascent isotactic polypropylene powders. Polymer Journal, 2012, 44, 764-771.	2.7	8
8	Nanowrinkled and Nanoporous Polyethylene Membranes Via Entanglement Arrangement Control. Advanced Functional Materials, 2012, 22, 2048-2057.	14.9	27
9	Phase Transition of Poly(tetramethyl- <i>p</i> -silphenylenesiloxane) As Revealed by <i>in Situ</i> X-ray and NMR Measurements. Macromolecules, 2012, 45, 7446-7453.	4.8	6
10	Solid-state 1H-NMR relaxation behavior for ultra-high-molecular-weight polyethylene reactor powders with different morphologies. Polymer Journal, 2012, 44, 795-801.	2.7	7
11	Nanoporous Membranes: Nanowrinkled and Nanoporous Polyethylene Membranes Via Entanglement Arrangement Control (Adv. Funct. Mater. 10/2012). Advanced Functional Materials, 2012, 22, 1994-1994.	14.9	0
12	Development and Applications of <i>in situ</i> Pulse NMR Measurement System for Drawing of Polymeric Materials. Kobunshi Ronbunshu, 2012, 69, 235-241.	0.2	2
13	Structural and property changes during uniaxial drawing of ethylene–tetrafluoroethylene copolymer films as analyzed by in-situ X-ray measurements. Polymer, 2011, 52, 1172-1179.	3.8	15
14	Characterization of the Cross-Linked Structure of Cured Novolac Resins with Hexamethylenetetramine by Pyrolysis-Gas Chromatography. Bunseki Kagaku, 2010, 59, 1013-1020.	0.2	1
15	Hierarchical constraint distribution of ultra-high molecular weight polyethylene fibers with different preparation methods. Journal of Materials Science, 2010, 45, 2574-2579.	3.7	17
16	Structure and Property Gradation from Surface to Bulk of Poly(<scp>l</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock Scanning Probe Microscopy. ACS Applied Materials & Interfaces, 2010, 2, 633-638.	10 Tf 50 1 8.0	47 Td (acid)/ 14
17	Novel Design Solving the Conductivity vs Water-Uptake Trade-Off for Polymer Electrolyte Membrane by Bicontinuous Crystalline/Amorphous Morphology of Block Copolymer. Macromolecules, 2009, 42, 7627-7630.	4.8	21
18	Novel in situ NMR Measurement System for Evaluating Molecular Mobility during Drawing from Highly Entangled Polyethylene Melts. Macromolecular Rapid Communications, 2008, 29, 1571-1576.	3.9	33

ΤΑΚΕSΗΙ ΥΑΜΑΝΟΒΕ

#	Article	IF	CITATIONS
19	Phase Transitions during Heating of Melt-Drawn Ultrahigh Molecular Weight Polyethylenes Having Different Molecular Characteristics. Journal of Physical Chemistry B, 2008, 112, 5311-5316.	2.6	33
20	Oriented Crystallization Induced by Uniaxial Drawing from Poly(tetrafluoroethylene) Melt. Macromolecules, 2007, 40, 9413-9419.	4.8	28
21	Nanoperiodic Arrangement of Crystal/Amorphous Phases Induced by Tensile Drawing of Highly Entangled Polyethylene. Macromolecules, 2007, 40, 5820-5826.	4.8	8
22	Single-Walled Carbon Nanotube Nucleated Solution-Crystallization of Polyethylene. Journal of Physical Chemistry C, 2007, 111, 18950-18957.	3.1	21
23	In situ SAXS analysis of extended-chain crystallization during melt-drawing of ultra-high molecular weight polyethylene. Polymer, 2007, 48, 7385-7392.	3.8	36
24	Solid-state characterization of polyethylene reactor powders and their structural changes upon annealing. Polymer, 2007, 48, 4547-4557.	3.8	23
25	Nanoporous Polyethylene Film Prepared from Bicontinuous Crystalline/Amorphous Structure of Block Copolymer Precursor. Macromolecules, 2006, 39, 3971-3974.	4.8	70
26	Continuous Film Processing from Ultrahigh-Molecular-Weight Polyethylene Reactor Powder and Mechanical Property Development by Melt Drawing. Industrial & Engineering Chemistry Research, 2006, 45, 7801-7806.	3.7	29
27	Structural arrangement of crystalline/amorphous phases of polyethylene-block-polystyrene copolymer as induced by orientation techniques. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1731-1737.	2.1	9
28	Effects of molecular characteristics and processing conditions on melt-drawing behavior of ultrahigh molecular weight polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2455-2467.	2.1	33
29	Transient crystallization during drawing from ultra-high molecular weight polyethylene melts having different entanglement characteristics. Polymer, 2006, 47, 8053-8060.	3.8	41
30	Phase Development Mechanism during Drawing from Highly Entangled Polyethylene Melts. Macromolecular Rapid Communications, 2006, 27, 966-970.	3.9	44
31	A Morphological Study of the Effect of Carbon Nanotube Filler on Tribology of Phenol/Formaldehyde Resin-based Composites. Polymer Journal, 2005, 37, 522-528.	2.7	19
32	Solid-State1H NMR Relaxation Analysis of Ultrahigh Molecular Weight Polyethylene Reactor Powder. Macromolecules, 2002, 35, 2640-2647.	4.8	37
33	Control of Tribological Properties with a Series of Random Copolymers. Langmuir, 2002, 18, 2949-2951.	3.5	7
34	Comparison of Macro- and Nanotribological Behavior with Surface Plastic Deformation of Polystyrene. Langmuir, 2001, 17, 2153-2159.	3.5	42
35	Surface Deformation Properties of Polystyrene as Evaluated from the Morphology of Surfaces Scratched by Using the Tip of a Scanning Force Microscope. Langmuir, 2001, 17, 5688-5692.	3.5	26
36	Relationship between Solid-State Molecular Motion and Morphology for Ultrahigh Molecular Weight Polyethylene Crystallized under Different Conditions. Macromolecules, 2000, 33, 4861-4870.	4.8	68

#	Article	IF	CITATIONS
37	Simple and Excellent Preparation of Polymorphic Crystals of 4,5-Bis(4-Methoxyphenyl)-2-(3-Nitrophenyl)- <i>1H</i> -Imidazole. Molecular Crystals and Liquid Crystals, 1996, 277, 259-269.	0.3	1
38	Structure and Physical Properties of Naphthalene Containing Polyesters I. Structure of Poly(butylene) Tj ETQq0 0 Polymer Journal, 1996, 28, 177-181.	0 rgBT /O 2.7	verlock 10 Tf 39
39	Polymorphisms of 4,5-Bis(4-Methoxyphenyl)-2-(3-Nitrophenyl)-1H-Imidazole as Studied by Solid State NMR. Molecular Crystals and Liquid Crystals, 1996, 276, 273-282.	0.3	1
40	Nylon 6 structure in solid state as studied by high-resolution 13C-NMR spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 929-937.	2.1	26
41	Interchain effect of 13C nuclear magnetic resonance chemical shift and electronic structure of polyoxymethylene chains in the solid state. Journal of Chemical Physics, 1988, 89, 5216-5223.	3.0	26
42	Effect of interchain interactions on 13C nuclear magnetic resonance chemical shifts and electronic structures of polyacetylene in the solid state as studied by tightâ€binding molecular orbital theory. Journal of Chemical Physics, 1988, 89, 7315-7319.	3.0	26
43	Proton NMR relaxation and molecular motion of long-chain cyclic paraffins in the solid state. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 2165-2178.	2.1	13
44	13C NMR studies of the conformation of cyclic paraffins, n-paraffins and polyethylene in solution. Die Makromolekulare Chemie, 1985, 186, 2071-2078.	1.1	13
45	Chain conformation of polyethylene in the crystallized state as studied by 13C CP/MAS NMR. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 349-352.	1.1	4
46	13C NMR chemical shift and electronic structure of an infinite polymer chain as studied by tightâ€binding theory within the CNDO/2 framework: Polyethylene andcisandtranspolyacetylenes. Journal of Chemical Physics, 1985, 83, 3154-3160.	3.0	35
47	Structural Analysis of Polyethylene by Solid State High Resolution ¹³ C NMR. Journal of Fiber Science and Technology, 1985, 41, P255-P259.	0.0	0
48	13C NMR chemical shifts and crystal structures of saturated hydrocarbons. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 657-659.	1.1	36
49	Carbon-13 N.M.R. chemical shift and electronic structure of an infinite polymer chain as studied by tight-binding MO theory Polyethylene, and cis and trans polyacetylenes. Molecular Physics, 1983, 50,	1.7	35