Johnny Vlaminck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4120334/publications.pdf

Version: 2024-02-01

		361296	360920
54	1,397	20	35
papers	citations	h-index	g-index
EE	E E	E E	1755
55	55	55	1755
all docs	docs citations	times ranked	citing authors
an docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ascaris suum draft genome. Nature, 2011, 479, 529-533.	13.7	246
2	The global progress of soil-transmitted helminthiases control in 2020 and World Health Organization targets for 2030. PLoS Neglected Tropical Diseases, 2020, 14, e0008505.	1.3	119
3	Diagnostic performance of a single and duplicate Kato-Katz, Mini-FLOTAC, FECPAKG2 and qPCR for the detection and quantification of soil-transmitted helminths in three endemic countries. PLoS Neglected Tropical Diseases, 2019, 13, e0007446.	1.3	76
4	Proteomic Analysis of the Excretory-Secretory Products from Larval Stages of Ascaris suum Reveals High Abundance of Glycosyl Hydrolases. PLoS Neglected Tropical Diseases, 2013, 7, e2467.	1.3	63
5	Diagnostic Tools for Onchocerciasis Elimination Programs. Trends in Parasitology, 2015, 31, 571-582.	1.5	62
6	A Role for Eosinophils in the Intestinal Immunity against Infective Ascaris suum Larvae. PLoS Neglected Tropical Diseases, 2013, 7, e2138.	1.3	52
7	The Intestinal Expulsion of the Roundworm Ascaris suum Is Associated with Eosinophils, Intra-Epithelial T Cells and Decreased Intestinal Transit Time. PLoS Neglected Tropical Diseases, 2013, 7, e2588.	1.3	47
8	Diagnostic tools for soil-transmitted helminths control and elimination programs: A pathway for diagnostic product development. PLoS Neglected Tropical Diseases, 2018, 12, e0006213.	1.3	46
9	Evaluation of a serodiagnostic test using Ascaris suum haemoglobin for the detection of roundworm infections in pig populations. Veterinary Parasitology, 2012, 189, 267-273.	0.7	38
10	Therapeutic efficacy of albendazole against soil-transmitted helminthiasis in children measured by five diagnostic methods. PLoS Neglected Tropical Diseases, 2019, 13, e0007471.	1.3	37
11	Comparison of four DNA extraction and three preservation protocols for the molecular detection and quantification of soil-transmitted helminths in stool. PLoS Neglected Tropical Diseases, 2019, 13, e0007778.	1.3	37
12	First international external quality assessment scheme of nucleic acid amplification tests for the detection of SchistosomaÂand soil-transmitted helminths, including Strongyloides: A pilot study. PLoS Neglected Tropical Diseases, 2020, 14, e0008231.	1.3	35
13	Advances in the diagnosis of <i> Ascaris suum < /i > infections in pigs and their possible applications in humans. Parasitology, 2014, 141, 1904-1911.</i>	0.7	34
14	Serological examination of fattening pigs reveals associations between Ascaris suum, lung pathogens and technical performance parameters. Veterinary Parasitology, 2015, 210, 151-158.	0.7	32
15	Diagnostic comparison between FECPAKG2 and the Kato-Katz method for analyzing soil-transmitted helminth eggs in stool. PLoS Neglected Tropical Diseases, 2018, 12, e0006562.	1.3	31
16	Measurement of Circulating Filarial Antigen Levels in Human Blood with a Point-of-Care Test Strip and a Portable Spectrodensitometer. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1324-1329.	0.6	30
17	Comprehensive evaluation of stool-based diagnostic methods and benzimidazole resistance markers to assess drug efficacy and detect the emergence of anthelmintic resistance: A Starworms study protocol. PLoS Neglected Tropical Diseases, 2018, 12, e0006912.	1.3	30
18	Vaccination of calves against Cooperia oncophora with a double-domain activation-associated secreted protein reduces parasite egg output and pasture contamination. International Journal for Parasitology, 2015, 45, 209-213.	1.3	28

#	Article	IF	Citations
19	Community Rates of IgG4 Antibodies to Ascaris Haemoglobin Reflect Changes in Community Egg Loads Following Mass Drug Administration. PLoS Neglected Tropical Diseases, 2016, 10, e0004532.	1.3	23
20	The optimal timing of post-treatment sampling for the assessment of anthelminthic drug efficacy against Ascaris infections in humans. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 67-69.	1.4	21
21	Modification and optimization of the FECPAKG2 protocol for the detection and quantification of soil-transmitted helminth eggs in human stool. PLoS Neglected Tropical Diseases, 2018, 12, e0006655.	1.3	18
22	Identifying thresholds for classifying moderate-to-heavy soil-transmitted helminth intensity infections for FECPAKG2, McMaster, Mini-FLOTAC and qPCR. PLoS Neglected Tropical Diseases, 2020, 14, e0008296.	1.3	18
23	Piloting a surveillance system to monitor the global patterns of drug efficacy and the emergence of anthelmintic resistance in soil-transmitted helminth control programs: a Starworms study protocol. Gates Open Research, 2020, 4, 28.	2.0	17
24	Evaluation of copromicroscopy and serology to measure the exposure to Ascaris infections across age groups and to assess the impact of 3 years of biannual mass drug administration in Jimma Town, Ethiopia. PLoS Neglected Tropical Diseases, 2020, 14, e0008037.	1.3	16
25	Affordable artificial intelligence-based digital pathology for neglected tropical diseases: A proof-of-concept for the detection of soil-transmitted helminths and Schistosoma mansoni eggs in Kato-Katz stool thick smears. PLoS Neglected Tropical Diseases, 2022, 16, e0010500.	1.3	16
26	Seasonally timed treatment programs for Ascaris lumbricoides to increase impact—An investigation using mathematical models. PLoS Neglected Tropical Diseases, 2018, 12, e0006195.	1.3	15
27	2-Methyl-pentanoyl-carnitine (2-MPC): a urine biomarker for patent Ascaris lumbricoides infection. Scientific Reports, 2020, 10, 15780.	1.6	15
28	The impact of four years of semiannual treatments with albendazole alone on lymphatic filariasis and soil-transmitted helminth infections: A community-based study in the Democratic Republic of the Congo. PLoS Neglected Tropical Diseases, 2020, 14, e0008322.	1.3	15
29	Individual responses to a single oral dose of albendazole indicate reduced efficacy against soil-transmitted helminths in an area with high drug pressure. PLoS Neglected Tropical Diseases, 2021, 15, e0009888.	1.3	15
30	Quantitative PCR in soil-transmitted helminth epidemiology and control programs: Toward a universal standard. PLoS Neglected Tropical Diseases, 2021, 15, e0009134.	1.3	14
31	Characterization of the \hat{l}^2 -tubulin gene family in Ascaris lumbricoides and Ascaris suum and its implication for the molecular detection of benzimidazole resistance. PLoS Neglected Tropical Diseases, 2021, 15, e0009777.	1.3	13
32	A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans. PLoS Neglected Tropical Diseases, 2016, 10, e0005166.	1.3	12
33	Detection of Ascaris lumbricoides infection by ABA-1 coproantigen ELISA. PLoS Neglected Tropical Diseases, 2020, 14, e0008807.	1.3	12
34	Comparison of Kato-Katz Thick Smear, Mini-FLOTAC, and Flukefinder for the Detection and Quantification of Fasciola hepatica Eggs in Artificially Spiked Human Stool. American Journal of Tropical Medicine and Hygiene, 2019, 101, 59-61.	0.6	12
35	Risk factors for lymphatic filariasis in two villages of the Democratic Republic of the Congo. Parasites and Vectors, 2019, 12, 162.	1.0	11
36	Effect of strategic deworming on Ascaris suum exposure and technical performance parameters in fattening pigs. Veterinary Parasitology, 2019, 268, 67-72.	0.7	10

#	Article	IF	Citations
37	Impact of Different Sampling Schemes for Decision Making in Soil-Transmitted Helminthiasis Control Programs. Journal of Infectious Diseases, 2020, 221, S531-S538.	1.9	10
38	High anti-Ascaris seroprevalence in fattening pigs in Sichuan, China, calls for improved management strategies. Parasites and Vectors, 2020, 13, 60.	1.0	10
39	Evaluation of serology to measure exposure of piglets to Ascaris suum during the nursery phase. Veterinary Parasitology, 2017, 246, 82-87.	0.7	9
40	Vaccination Against Strongyloides venezuelensis with Homologue Antigens Using New Immunomodulators. Journal of Parasitology, 2010, 96, 643-647.	0.3	8
41	Anti-Ascaris suum IgG antibodies in fattening pigs with different respiratory conditions. Veterinary Parasitology, 2019, 265, 85-90.	0.7	8
42	Identification of antigenic linear peptides in the soil-transmitted helminth and Schistosoma mansoni proteome. PLoS Neglected Tropical Diseases, 2021, 15, e0009369.	1.3	7
43	Assessment of environmental contamination with soil-transmitted helminths life stages at school compounds, households and open markets in Jimma Town, Ethiopia. PLoS Neglected Tropical Diseases, 2022, 16, e0010307.	1.3	7
44	Patent infections with soil-transmitted helminths and Schistosoma mansoni are not associated with increased prevalence of antibodies to the Onchocerca volvulus peptide epitopes OvMP-1 and OvMP-23. Parasites and Vectors, 2019, 12, 63.	1.0	5
45	Quantitative lipidomic analysis of Ascaris suum. PLoS Neglected Tropical Diseases, 2020, 14, e0008848.	1.3	5
46	An in-depth report of quality control on Kato-Katz and data entry in four clinical trials evaluating the efficacy of albendazole against soil-transmitted helminth infections. PLoS Neglected Tropical Diseases, 2020, 14, e0008625.	1.3	4
47	Diagnostic sensitivity of direct wet mount microscopy for soil-transmitted helminth infections in Jimma Town, Ethiopia. Journal of Infection in Developing Countries, 2020, 14, 66S-71S.	0.5	3
48	Longitudinal assessment of the exposure to Ascaris lumbricoides through copromicroscopy and serology in school children from Jimma Town, Ethiopia. PLoS Neglected Tropical Diseases, 2022, 16, e0010131.	1.3	3
49	Diagnosis and Control of Ascariasis in Pigs. , 2013, , 395-425.		2
50	A strong effect of individual compliance with mass drug administration for lymphatic filariasis on sustained clearance of soil-transmitted helminth infections. Parasites and Vectors, 2021, 14, 310.	1.0	0
51	Quantitative lipidomic analysis of Ascaris suum. , 2020, 14, e0008848.		0
52	Quantitative lipidomic analysis of Ascaris suum. , 2020, 14, e0008848.		0
53	Quantitative lipidomic analysis of Ascaris suum. , 2020, 14, e0008848.		0
54	Quantitative lipidomic analysis of Ascaris suum. , 2020, 14, e0008848.		О