List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4119750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses. Cell Chemical Biology, 2022, 29, 774-784.e8.	2.5	34
2	Shut-Down of Type IX Protein Secretion Alters the Host Immune Response to Tannerella forsythia and Porphyromonas gingivalis. Frontiers in Cellular and Infection Microbiology, 2022, 12, 835509.	1.8	4
3	<i>Porphyromonas gingivalis</i> Gingipains-Mediated Degradation of Plasminogen Activator Inhibitor-1 Leads to Delayed Wound Healing Responses in Human Endothelial Cells. Journal of Innate Immunity, 2022, 14, 306-319.	1.8	8
4	Antibodies to Porphyromonas gingivalis Are Increased in Patients with Severe Periodontitis, and Associate with Presence of Specific Autoantibodies and Myocardial Infarction. Journal of Clinical Medicine, 2022, 11, 1008.	1.0	2
5	Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontology 2000, 2022, 89, 83-98.	6.3	19
6	TLR2 Activation by Porphyromonas gingivalis Requires Both PPAD Activity and Fimbriae. Frontiers in Immunology, 2022, 13, 823685.	2.2	14
7	A unique bacterial secretion machinery with multiple secretion centers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119907119.	3.3	17
8	Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. MBio, 2022, 13, e0378721.	1.8	5
9	Mechanisms of vascular damage by systemic dissemination of the oral pathogen <i>Porphyromonas gingivalis</i> . FEBS Journal, 2021, 288, 1479-1495.	2.2	34
10	Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. Journal of Biological Chemistry, 2021, 296, 100263.	1.6	9
11	Latency, thermal stability, and identification of an inhibitory compound of mirolysin, a secretory protease of the human periodontopathogen Tannerella forsythia. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1267-1281.	2.5	3
12	PorZ, an Essential Component of the Type IX Secretion System of <i>Porphyromonas gingivalis</i> , Delivers Anionic Lipopolysaccharide to the PorU Sortase for Transpeptidase Processing of T9SS Cargo Proteins. MBio, 2021, 12, .	1.8	17
13	MCPIP-1 Restricts Inflammation via Promoting Apoptosis of Neutrophils. Frontiers in Immunology, 2021, 12, 627922.	2.2	12
14	Murine myeloid cell MCPIP1 suppresses autoimmunity by regulating B-cell expansion and differentiation. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	11
15	In Search of Spectroscopic Signatures of Periodontitis: A SERS-Based Magnetomicrofluidic Sensor for Detection of <i>Porphyromonas gingivalis</i> and <i>Aggregatibacter actinomycetemcomitans</i> . ACS Sensors, 2021, 6, 1621-1635.	4.0	18
16	hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Scientific Reports, 2021, 11, 10770.	1.6	13
17	Subversion of Lipopolysaccharide Signaling in Gingival Keratinocytes via MCPIP-1 Degradation as a Novel Pathogenic Strategy of Inflammophilic Pathobionts. MBio, 2021, 12, e0050221.	1.8	7
18	The RagA and RagB proteins of <i>Porphyromonas gingivalis</i> . Molecular Oral Microbiology, 2021, 36, 225-232.	1.3	7

#	Article	IF	CITATIONS
19	Antimicrobial photodynamic therapy effectively reduces Porphyromonas gingivalis infection in gingival fibroblasts and keratinocytes: An in vitro study. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102330.	1.3	8
20	Porphyromonas gingivalis Outer Membrane Vesicles as the Major Driver of and Explanation for Neuropathogenesis, the Cholinergic Hypothesis, Iron Dyshomeostasis, and Salivary Lactoferrin in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 82, 1417-1450.	1.2	26
21	Serum Complement Activation by C4BP-IgM Fusion Protein Can Restore Susceptibility to Antibiotics in Neisseria gonorrhoeae. Frontiers in Immunology, 2021, 12, 726801.	2.2	3
22	Intermolecular latency regulates the essential C-terminal signal peptidase and sortase of the <i>Porphyromonas gingivalis</i> type-IX secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
23	Phosphorylation of major <i>Porphyromonas gingivalis</i> virulence factors is crucial for their processing and secretion. Molecular Oral Microbiology, 2021, 36, 316-326.	1.3	8
24	Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathogens, 2021, 17, e1009874.	2.1	18
25	Uncovering the Oral Dysbiotic Microbiota as Masters of Neutrophil Responses in the Pathobiology of Periodontitis. Frontiers in Microbiology, 2021, 12, 729717.	1.5	10
26	Treatment of severe periodontitis may improve clinical disease activity in otherwise treatment-refractory rheumatoid arthritis patients. Rheumatology, 2020, 59, 243-245.	0.9	8
27	Citrullinome of Porphyromonas gingivalis Outer Membrane Vesicles: Confident Identification of Citrullinated Peptides. Molecular and Cellular Proteomics, 2020, 19, 167-180.	2.5	18
28	Plasmin inhibition by bacterial serpin: Implications in gum disease. FASEB Journal, 2020, 34, 619-630.	0.2	12
29	<i>Porphyromonas gingivalis</i> genes conferring fitness in a tobaccoâ€rich environment. Molecular Oral Microbiology, 2020, 35, 10-18.	1.3	7
30	Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clinical Epigenetics, 2020, 12, 186.	1.8	49
31	Citrullination-Resistant LL-37 Is a Potent Antimicrobial Agent in the Inflammatory Environment High in Arginine Deiminase Activity. International Journal of Molecular Sciences, 2020, 21, 9126.	1.8	7
32	Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Science Signaling, 2020, 13, .	1.6	10
33	Application of the In Vitro HoxB8 Model System to Characterize the Contributions of Neutrophil–LPS Interaction to Periodontal Disease. Pathogens, 2020, 9, 530.	1.2	1
34	Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5, 1016-1025.	5.9	46
35	Proteolysis of Gingival Keratinocyte Cell Surface Proteins by Gingipains Secreted From Porphyromonas gingivalis – Proteomic Insights Into Mechanisms Behind Tissue Damage in the Diseased Gingiva. Frontiers in Microbiology, 2020, 11, 722.	1.5	12
36	Analysis of oral microbiome from fossil human remains revealed the significant differences in virulence factors of modern and ancient Tannerella forsythia. BMC Genomics, 2020, 21, 402.	1.2	8

#	Article	IF	CITATIONS
37	Kallikrein-Related Peptidase 14 Activates Zymogens of Membrane Type Matrix Metalloproteinases (MT-MMPs)—A CleavEx Based Analysis. International Journal of Molecular Sciences, 2020, 21, 4383.	1.8	5
38	Apolipoprotein E Triggers Complement Activation in Joint Synovial Fluid of Rheumatoid Arthritis Patients by Binding C1q. Journal of Immunology, 2020, 204, 2779-2790.	0.4	20
39	Peptidylarginine Deiminase of Porphyromonas gingivalis Modulates the Interactions between Candida albicans Biofilm and Human Plasminogen and High-Molecular-Mass Kininogen. International Journal of Molecular Sciences, 2020, 21, 2495.	1.8	8
40	Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases. IUCrJ, 2020, 7, 18-29.	1.0	9
41	Meprin \hat{I}^2 induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage. FASEB Journal, 2019, 33, 11925-11940.	0.2	18
42	Metabolomic Status of The Oral Cavity in Chronic Periodontitis. In Vivo, 2019, 33, 1165-1174.	0.6	31
43	The Bactericidal Activity of Temporin Analogues Against Methicillin Resistant Staphylococcus aureus. International Journal of Molecular Sciences, 2019, 20, 4761.	1.8	9
44	<i>Porphyromonas gingivalis</i> in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 2019, 5, eaau3333.	4.7	1,152
45	BET Bromodomain Inhibitors Suppress Inflammatory Activation of Gingival Fibroblasts and Epithelial Cells From Periodontitis Patients. Frontiers in Immunology, 2019, 10, 933.	2.2	28
46	Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Biochimie, 2019, 166, 161-172.	1.3	14
47	Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits. PLoS Pathogens, 2019, 15, e1007773.	2.1	46
48	Development of Chemical Tools to Monitor Human Kallikrein 13 (KLK13) Activity. International Journal of Molecular Sciences, 2019, 20, 1557.	1.8	15
49	An IgY-based immunoassay to evaluate the biomarker potential of the Tannerella forsythia virulence factor karilysin in human saliva. Journal of Immunological Methods, 2019, 469, 26-32.	0.6	7
50	Structural determinants of inhibition of Porphyromonas gingivalis gingipain K by KYT-36, a potent, selective, and bioavailable peptidase inhibitor. Scientific Reports, 2019, 9, 4935.	1.6	17
51	A natural anti-periodontitis agent, epimedokoreanin B, inhibits virulence activities of gingipains from <i>Porphyromonas gingivalis</i> . Bioscience, Biotechnology and Biochemistry, 2019, 83, 1382-1384.	0.6	6
52	Tethering soluble meprin α in an enzyme complex to the cell surface affects IBDâ€associated genes. FASEB Journal, 2019, 33, 7490-7504.	0.2	20
53	Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Scientific Reports, 2019, 9, 4376.	1.6	44
54	Gingipains impair attachment of epithelial cell to dental titanium abutment surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2549-2556.	1.6	4

#	Article	IF	CITATIONS
55	Expression of human and Porphyromonas gingivalis glutaminyl cyclases in periodontitis and rheumatoid arthritis–A pilot study. Archives of Oral Biology, 2019, 97, 223-230.	0.8	19
56	Structure, function, and inhibition of a genomic/clinical variant of <i>Porphyromonas gingivalis</i> peptidylarginine deiminase. Protein Science, 2019, 28, 478-486.	3.1	21
57	Effects of statins on multispecies oral biofilm identify simvastatin as a drug candidate targeting <i>Porphyromonas gingivalis</i> . Journal of Periodontology, 2019, 90, 637-646.	1.7	13
58	Fibroblasts from recurrent fibrotic overgrowths reveal high rate of proliferation in vitro - findings from the study of hereditary and idiopathic gingival fibromatosis. Connective Tissue Research, 2019, 60, 29-39.	1.1	8
59	Porphyromonas Gingivalis Infections Underline Association of Periodontitis with Systemic Diseases. FASEB Journal, 2019, 33, 78.1.	0.2	1
60	A Novel Biological Role for Peptidyl-Arginine Deiminases: Citrullination of Cathelicidin LL-37 Controls the Immunostimulatory Potential of Cell-Free DNA. Journal of Immunology, 2018, 200, 2327-2340.	0.4	27
61	The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathogens and Disease, 2018, 76, .	0.8	34
62	Unique Substrate Specificity of SplE Serine Protease from Staphylococcus aureus. Structure, 2018, 26, 572-579.e4.	1.6	22
63	Proteolytic effects of gingipains on trefoil factor family peptides. Clinical Oral Investigations, 2018, 22, 1009-1018.	1.4	4
64	Epigenetic regulation in bacterial infections: targeting histone deacetylases. Critical Reviews in Microbiology, 2018, 44, 336-350.	2.7	99
65	Impact of Porphyromonas gingivalis Peptidylarginine Deiminase on Bacterial Biofilm Formation, Epithelial Cell Invasion, and Epithelial Cell Transcriptional Landscape. Scientific Reports, 2018, 8, 14144.	1.6	26
66	Periodontal Pathogens and Associated Intrathecal Antibodies in Early Stages of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 66, 105-114.	1.2	43
67	Structural basis for ADP-dependent glucokinase inhibition by 8-bromo–substituted adenosine nucleotide. Journal of Biological Chemistry, 2018, 293, 11088-11099.	1.6	10
68	Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer's disease. Journal of Oral Microbiology, 2018, 10, 1487742.	1.2	68
69	The Bacteroidetes Q-Rule: Pyroglutamate in Signal Peptidase I Substrates. Frontiers in Microbiology, 2018, 9, 230.	1.5	16
70	Host cell-surface proteins as substrates of gingipains, the main proteases of <i>Porphyromonas gingivalis</i> . Biological Chemistry, 2018, 399, 1353-1361.	1.2	24
71	TIMPâ€l association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Diseases, 2018, 24, 1581-1590.	1.5	18
72	Aristolochic acid I determine the phenotype and activation of macrophages in acute and chronic kidney disease. Scientific Reports, 2018, 8, 12169.	1.6	24

#	Article	IF	CITATIONS
73	<i>Porphyromonas gingivalis</i> Peptidyl Arginine Deiminase Can Modulate Neutrophil Activity via Infection of Human Dental Stem Cells. Journal of Innate Immunity, 2018, 10, 264-278.	1.8	9
74	Complement Activation as a Helping Hand for Inflammophilic Pathogens and Cancer. Frontiers in Immunology, 2018, 9, 3125.	2.2	12
75	Relationship between past myocardial infarction, periodontal disease and Porphyromonas gingivalis serum antibodies: A case-control study. Cardiology Journal, 2018, 25, 386-392.	0.5	10
76	Structural insights unravel the zymogenic mechanism of the virulence factor gingipain K from Porphyromonas gingivalis, a causative agent of gum disease from the human oral microbiome. Journal of Biological Chemistry, 2017, 292, 5724-5735.	1.6	8
77	07.14â€Novel polymorphism of peptidylarginine deiminase from p. gingivalis augments bacterial pathogenicity and severity of periodontitis. , 2017, , .		0
78	Mirolysin, a LysargiNase from <i>Tannerella forsythia</i> , proteolytically inactivates the human cathelicidin, LL-37. Biological Chemistry, 2017, 398, 395-409.	1.2	18
79	The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nature Reviews Rheumatology, 2017, 13, 606-620.	3.5	301
80	Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Scientific Reports, 2017, 7, 8689.	1.6	70
81	Mucus Detachment by Host Metalloprotease Meprin \hat{l}^2 Requires Shedding of Its Inactive Pro-form, which Is Abrogated by the Pathogenic Protease RgpB. Cell Reports, 2017, 21, 2090-2103.	2.9	31
82	Association of Distinct Fine Specificities of Antiâ^'Citrullinated Peptide Antibodies With Elevated Immune Responses to <i>Prevotella intermedia</i> in a Subgroup of Patients With Rheumatoid Arthritis and Periodontitis. Arthritis and Rheumatology, 2017, 69, 2303-2313.	2.9	37
83	Immunomodulatory Molecule IRAK-M Balances Macrophage Polarization and Determines Macrophage Responses during Renal Fibrosis. Journal of Immunology, 2017, 199, 1440-1452.	0.4	22
84	A structure-derived snap-trap mechanism of a multispecific serpin from the dysbiotic human oral microbiome. Journal of Biological Chemistry, 2017, 292, 10883-10898.	1.6	17
85	Role of OmpA2 surface regions of <i>Porphyromonas gingivalis</i> in host-pathogen interactions with oral epithelial cells. MicrobiologyOpen, 2017, 6, e00401.	1.2	12
86	Inactive Gingipains from P. gingivalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner. Frontiers in Cellular and Infection Microbiology, 2017, 7, 140.	1.8	24
87	Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 197.	1.8	63
88	The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Frontiers in Cellular and Infection Microbiology, 2017, 7, 215.	1.8	217
89	Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments. Frontiers in Cellular and Infection Microbiology, 2017, 7, 378.	1.8	43
90	Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease. Frontiers in Immunology, 2017, 8, 353.	2.2	13

#	Article	IF	CITATIONS
91	Porphyromonas gingivalis Peptidyl Arginine Deiminase: A Unique Bacterial PAD with Implications for Periodontal Disease and Rheumatoid Arthritis. , 2017, , 99-135.		5
92	Antibodies to <i>Porphyromonas gingivalis</i> Indicate Interaction Between Oral Infection, Smoking, and Risk Genes in Rheumatoid Arthritis Etiology. Arthritis and Rheumatology, 2016, 68, 604-613.	2.9	119
93	The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Scientific Reports, 2016, 6, 23123.	1.6	52
94	Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Scientific Reports, 2016, 6, 31441.	1.6	25
95	A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. ACS Chemical Biology, 2016, 11, 3310-3318.	1.6	31
96	Concentration of antibodies against Porphyromonas gingivalis is increased before the onset of symptoms of rheumatoid arthritis. Arthritis Research and Therapy, 2016, 18, 201.	1.6	73
97	MCPIP-1, Alias Regnase-1, Controls Epithelial Inflammation by Posttranscriptional Regulation of IL-8 Production. Journal of Innate Immunity, 2016, 8, 564-578.	1.8	36
98	Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis Scientific Reports, 2016, 6, 37708.	1.6	58
99	FACIN, a Double-Edged Sword of the Emerging Periodontal PathogenFilifactor alocis: A Metabolic Enzyme Moonlighting as a Complement Inhibitor. Journal of Immunology, 2016, 197, 3245-3259.	0.4	17
100	Gingipains of Porphyromonas gingivalis Affect the Stability and Function of Serine Protease Inhibitor of Kazal-type 6 (SPINK6), a Tissue Inhibitor of Human Kallikreins. Journal of Biological Chemistry, 2016, 291, 18753-18764.	1.6	10
101	Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases. Scientific Reports, 2016, 6, 36023.	1.6	25
102	Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infectious Agents and Cancer, 2016, 11, 3.	1.2	209
103	Cingival fibromatosis: clinical, molecular and therapeutic issues. Orphanet Journal of Rare Diseases, 2016, 11, 9.	1.2	75
104	Gingipains: Critical Factors in the Development of Aspiration Pneumonia Caused by <i>Porphyromonas gingivalis</i> . Journal of Innate Immunity, 2016, 8, 185-198.	1.8	62
105	Carbamylated LL-37 as a modulator of the immune response. Innate Immunity, 2016, 22, 218-229.	1.1	32
106	Kallikreins – The melting pot of activity and function. Biochimie, 2016, 122, 270-282.	1.3	85
107	Citrullination in the periodontium—a possible link between periodontitis and rheumatoid arthritis. Clinical Oral Investigations, 2016, 20, 675-683.	1.4	80
108	Gingival fibromatosis with significant de novo formation of fibrotic tissue and a high rate of recurrence. American Journal of Case Reports, 2016, 17, 671-675.	0.3	11

#	Article	IF	CITATIONS
109	Breakdown of albumin and haemalbumin by the cysteine protease interpain A, an albuminase of Prevotella intermedia. BMC Microbiology, 2015, 15, 185.	1.3	9
110	Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case–control study. BMC Musculoskeletal Disorders, 2015, 16, 331.	0.8	37
111	KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure. Frontiers in Microbiology, 2015, 6, 312.	1.5	40
112	Cleavage of Host Cytokeratin-6 by Lysine-Specific Gingipain Induces Gingival Inflammation in Periodontitis Patients. PLoS ONE, 2015, 10, e0117775.	1.1	23
113	The Nucleocapsid Protein of Human Coronavirus NL63. PLoS ONE, 2015, 10, e0117833.	1.1	23
114	Purification and characterisation of recombinant His-tagged RgpB gingipain from Porphymonas gingivalis. Biological Chemistry, 2015, 396, 377-384.	1.2	20
115	Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia. Biological Chemistry, 2015, 396, 261-275.	1.2	29
116	The Janus Face of a-Toxin: A Potent Mediator of Cytoprotection in Staphylococci-Infected Macrophages. Journal of Innate Immunity, 2015, 7, 187-198.	1.8	17
117	<i>Porphyromonas gingivalis </i> Gingipains Selectively Reduce CD14 Expression, Leading to Macrophage Hyporesponsiveness to Bacterial Infection. Journal of Innate Immunity, 2015, 7, 127-135.	1.8	63
118	A Novel Mechanism of Latency in Matrix Metalloproteinases. Journal of Biological Chemistry, 2015, 290, 4728-4740.	1.6	17
119	Miropin, a Novel Bacterial Serpin from the Periodontopathogen Tannerella forsythia, Inhibits a Broad Range of Proteases by Using Different Peptide Bonds within the Reactive Center Loop. Journal of Biological Chemistry, 2015, 290, 658-670.	1.6	42
120	Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Scientific Reports, 2015, 5, 11969.	1.6	72
121	Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems. Journal of Bacteriology, 2015, 197, 2631-2641.	1.0	18
122	Noncanonical Activation of β-Catenin by Porphyromonas gingivalis. Infection and Immunity, 2015, 83, 3195-3203.	1.0	40
123	PPAD remains a credible candidate for inducing autoimmunity in rheumatoid arthritis: comment on the article by Konig <i>et al</i> . Annals of the Rheumatic Diseases, 2015, 74, e7-e7.	0.5	9
124	Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase. Journal of Biological Chemistry, 2015, 290, 27248-27260.	1.6	11
125	A Metalloproteinase Mirolysin of <i>Tannerella forsythia</i> Inhibits All Pathways of the Complement System. Journal of Immunology, 2015, 195, 2231-2240.	0.4	32
126	Pyocycanin, a Contributory Factor in Haem Acquisition and Virulence Enhancement of Porphyromonas gingivalis in the Lung. PLoS ONE, 2015, 10, e0118319.	1.1	22

#	Article	IF	CITATIONS
127	Porphyromonas gingivalis-derived Lysine Gingipain Enhances Osteoclast Differentiation Induced by Tumor Necrosis Factor-α and Interleukin-1β but Suppresses That by Interleukin-17A. Journal of Biological Chemistry, 2014, 289, 15621-15630.	1.6	40
128	Structure and Mechanism of Cysteine Peptidase Gingipain K (Kgp), a Major Virulence Factor of Porphyromonas gingivalis in Periodontitis. Journal of Biological Chemistry, 2014, 289, 32291-32302.	1.6	74
129	Lack of cathelicidin processing in Papillon-Lefèvre syndrome patients reveals essential role of LL-37 in periodontal homeostasis. Orphanet Journal of Rare Diseases, 2014, 9, 148.	1.2	40
130	Genome Sequence of Porphyromonas gingivalis Strain HG66 (DSM 28984). Genome Announcements, 2014, 2, .	0.8	12
131	Citrullination Alters Immunomodulatory Function of LL-37 Essential for Prevention of Endotoxin-Induced Sepsis. Journal of Immunology, 2014, 192, 5363-5372.	0.4	59
132	Peptidyl Arginine Deiminase from Porphyromonas gingivalis Abolishes Anaphylatoxin C5a Activity. Journal of Biological Chemistry, 2014, 289, 32481-32487.	1.6	83
133	Staphylococcal SplB Serine Protease Utilizes a Novel Molecular Mechanism of Activation. Journal of Biological Chemistry, 2014, 289, 15544-15553.	1.6	17
134	<i>Porphyromonas gingivalis</i> Fimbriae Dampen P2X7-Dependent Interleukin-1β Secretion. Journal of Innate Immunity, 2014, 6, 831-845.	1.8	43
135	Staphylococcal Proteases Aid in Evasion of the Human Complement System. Journal of Innate Immunity, 2014, 6, 31-46.	1.8	91
136	Citrullination and Proteolytic Processing of Chemokines by Porphyromonas gingivalis. Infection and Immunity, 2014, 82, 2511-2519.	1.0	22
137	Development and binding characteristics of phosphonate inhibitors of SplA protease from <i>Staphylococcus aureus </i> . Protein Science, 2014, 23, 179-189.	3.1	11
138	The Link Between Periodontal Disease and Rheumatoid Arthritis: An Updated Review. Current Rheumatology Reports, 2014, 16, 408.	2.1	176
139	Heightened immune response to autocitrullinated <i>Porphyromonas gingivalis</i> peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2014, 73, 263-269.	0.5	171
140	Carbamylation of immunoglobulin abrogates activation of the classical complement pathway. European Journal of Immunology, 2014, 44, 3403-3412.	1.6	23
141	Human Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target Cells. Journal of Virology, 2014, 88, 13221-13230.	1.5	257
142	Filifactor alocis Infection and Inflammatory Responses in the Mouse Subcutaneous Chamber Model. Infection and Immunity, 2014, 82, 1205-1212.	1.0	37
143	Stability of infectious human coronavirus NL63. Journal of Virological Methods, 2014, 205, 87-90.	1.0	9
144	Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. Journal of Oral Microbiology, 2014, 6, 24800.	1.2	52

JAN S ΡΟΤΕΜΡΑ

#	Article	IF	CITATIONS
145	Dipeptidyl-Peptidase 7 of Porphyromonas gingivalis. , 2013, , 3641-3643.		1
146	Novel polymeric inhibitors of HCoV-NL63. Antiviral Research, 2013, 97, 112-121.	1.9	66
147	Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4218-4228.	1.1	21
148	HexaPrime: A novel method for detection of coronaviruses. Journal of Virological Methods, 2013, 188, 29-36.	1.0	0
149	Cleavage of extracellular matrix in periodontitis: Gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 517-526.	1.8	45
150	The <i>Staphylococcus aureus</i> leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. Biological Chemistry, 2013, 394, 791-803.	1.2	25
151	Protease-armed bacteria in the skin. Cell and Tissue Research, 2013, 351, 325-337.	1.5	77
152	<i>Staphylococcus aureus</i> Proteases Degrade Lung Surfactant Protein A Potentially Impairing Innate Immunity of the Lung. Journal of Innate Immunity, 2013, 5, 251-260.	1.8	36
153	The Role of Mcl-1 inS. aureus-Induced Cytoprotection of Infected Macrophages. Mediators of Inflammation, 2013, 2013, 1-12.	1.4	16
154	Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD). PLoS Pathogens, 2013, 9, e1003627.	2.1	212
155	Inactivation of Epidermal Growth Factor by Porphyromonas gingivalis as a Potential Mechanism for Periodontal Tissue Damage. Infection and Immunity, 2013, 81, 55-64.	1.0	46
156	Glutaminyl Cyclases as Novel Targets for the Treatment of Septic Arthritis. Journal of Infectious Diseases, 2013, 207, 768-777.	1.9	15
157	Structure of the catalytic domain of the <i>Tannerella forsythia</i> matrix metallopeptidase karilysin in complex with a tetrapeptidic inhibitor. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 472-476.	0.7	10
158	Sequenceâ€independent processing site of the <scp>C</scp> â€terminal domain (<scp>CTD</scp>) influences maturation of the <scp>RgpB</scp> protease from <i><scp>P</scp>orphyromonas gingivalis</i> . Molecular Microbiology, 2013, 89, 903-917.	1.2	32
159	Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB). Journal of Biological Chemistry, 2013, 288, 14636-14646.	1.6	69
160	Porphyromonas gingivalis Virulence Factor Gingipain RgpB Shows a Unique Zymogenic Mechanism for Cysteine Peptidases. Journal of Biological Chemistry, 2013, 288, 14287-14296.	1.6	33
161	Gingipain R. , 2013, , 2328-2336.		0
162	Biochemical and Structural Characterization of SplD Protease from Staphylococcus aureus. PLoS ONE, 2013, 8, e76812.	1.1	29

#	Article	IF	CITATIONS
163	Gingipain K. , 2013, , 2337-2344.		4
164	Aureolysin. , 2013, , 563-569.		4
165	Staphopain A. , 2013, , 2150-2157.		2
166	The IgA Protease of Clostridium ramosum. , 2013, , 1225-1228.		1
167	Interpain A. , 2013, , 2163-2168.		1
168	Karilysin. , 2013, , 883-886.		1
169	Staphopain B. , 2013, , 2157-2163.		1
170	A Metalloproteinase Karilysin Present in the Majority of <i>Tannerella forsythia</i> Isolates Inhibits All Pathways of the Complement System. Journal of Immunology, 2012, 188, 2338-2349.	0.4	75
171	Secretory Leukocyte Proteinase Inhibitor-Competent DNA Deposits Are Potent Stimulators of Plasmacytoid Dendritic Cells: Implication for Psoriasis. Journal of Immunology, 2012, 189, 1611-1617.	0.4	69
172	Disruption of gingipain oligomerization into non-covalent cell-surface attached complexes. Biological Chemistry, 2012, 393, 971-977.	1.2	15
173	Gingipain aminopeptidase activities in <i>Porphyromonas gingivalis</i> . Biological Chemistry, 2012, 393, 1471-1476.	1.2	20
174	Posttranslational Modifications in Innate Immunity. Journal of Innate Immunity, 2012, 4, 119-120.	1.8	2
175	Prevalence of genes encoding extracellular proteases in <i>Staphylococcus aureus</i> — important targets triggering immune response <i>in vivo</i> . FEMS Immunology and Medical Microbiology, 2012, 66, 220-229.	2.7	38
176	Substrate specificity of Staphylococcus aureus cysteine proteases – Staphopains A, B and C. Biochimie, 2012, 94, 318-327.	1.3	20
177	Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biological Chemistry, 2012, 393, 873-888.	1.2	61
178	Identification of an intracellular M17 family leucine aminopeptidase thatÂisÂrequired for virulence in Staphylococcus aureus. Microbes and Infection, 2012, 14, 989-999.	1.0	40
179	Use of Sensitive, Broad-Spectrum Molecular Assays and Human Airway Epithelium Cultures for Detection of Respiratory Pathogens. PLoS ONE, 2012, 7, e32582.	1.1	11
180	Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia. PLoS ONE, 2012, 7, e34852.	1.1	21

#	Article	IF	CITATIONS
181	Inhibition of CSK3 Abolishes Bacterial-Induced Periodontal Bone Loss in Mice. Molecular Medicine, 2012, 18, 1190-1196.	1.9	36
182	Apoptotic cell clearance in chronic inflammation of lateral neck cysts. European Archives of Oto-Rhino-Laryngology, 2012, 269, 965-970.	0.8	0
183	A Phage Display Selected 7-mer Peptide Inhibitor of the Tannerella forsythia Metalloprotease-Like Enzyme Karilysin can be Truncated to Ser-Trp-Phe-Pro. PLoS ONE, 2012, 7, e48537.	1.1	10
184	Bacterial Proteases in Disease – Role in Intracellular Survival, Evasion of Coagulation/ Fibrinolysis Innate Defenses, Toxicoses and Viral Infections. Current Pharmaceutical Design, 2012, 19, 1090-1113.	0.9	23
185	Comparison of Gingival Crevicular Fluid Sampling Methods in Patients With Severe Chronic Periodontitis. Journal of Periodontology, 2011, 82, 1051-1060.	1.7	100
186	Regulation of Chemerin Chemoattractant and Antibacterial Activity by Human Cysteine Cathepsins. Journal of Immunology, 2011, 187, 1403-1410.	0.4	69
187	Papain-Like Proteases of Staphylococcus aureus. Advances in Experimental Medicine and Biology, 2011, 712, 1-14.	0.8	36
188	Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis. Analytical Biochemistry, 2011, 415, 158-167.	1.1	33
189	HmuY Haemophore and Gingipain Proteases Constitute a Unique Syntrophic System of Haem Acquisition by Porphyromonas gingivalis. PLoS ONE, 2011, 6, e17182.	1.1	64
190	19 Kinins in bacterial infections. , 2011, , .		3
191	The structure of the catalytic domain of <i>Tannerella forsythia</i> karilysin reveals it is a bacterial xenologue of animal matrix metalloproteinases. Molecular Microbiology, 2011, 79, 119-132.	1.2	27
192	Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63. Journal of Virological Methods, 2011, 175, 133-136.	1.0	40
193	NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 2206-2219.	0.7	85
194	Human SCCA Serpins Inhibit Staphylococcal Cysteine Proteases by Forming Classic "Serpin-Like― Covalent Complexes. Methods in Enzymology, 2011, 499, 331-345.	0.4	11
195	Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 786-792.	0.7	69
196	Cleavage of IgG ₁ and IgG ₃ by gingipain K from <i>Porphyromonas gingivalis</i> may compromise host defense in progressive periodontitis. FASEB Journal, 2011, 25, 3741-3750.	0.2	58
197	Adsorption of Components of the Plasma Kinin-Forming System on the Surface of <i>Porphyromonas gingivalis</i> Involves Gingipains as the Major Docking Platforms. Infection and Immunity, 2011, 79, 797-805.	1.0	45
198	Porphyromonas gingivalis enzymes enhance infection with human metapneumovirus in vitro. Journal of General Virology, 2011, 92, 2324-2332.	1.3	6

#	Article	IF	CITATIONS
199	Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence. Biological Chemistry, 2011, 392, 483-9.	1.2	27
200	Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. Journal of General Virology, 2011, 92, 1358-1368.	1.3	44
201	The Lysine-Specific Gingipain of Porphyromonas gingivalis. Advances in Experimental Medicine and Biology, 2011, 712, 15-29.	0.8	26
202	Role of the cysteine protease interpain A of <i>Prevotella intermedia</i> in breakdown and release of haem from haemoglobin. Biochemical Journal, 2010, 425, 257-264.	1.7	33
203	Peptidylarginine deiminase from <i>Porphyromonas gingivalis</i> citrullinates human fibrinogen and αâ€enolase: Implications for autoimmunity in rheumatoid arthritis. Arthritis and Rheumatism, 2010, 62, 2662-2672.	6.7	547
204	Complementary Tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontology 2000, 2010, 52, 141-162.	6.3	66
205	Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontology 2000, 2010, 54, 15-44.	6.3	284
206	A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037. Biological Chemistry, 2010, 391, 105-17.	1.2	60
207	Dentipain, a Streptococcus pyogenes IdeS protease homolog, is a novel virulence factor of Treponema denticola. Biological Chemistry, 2010, 391, 1047-55.	1.2	17
208	Proteolytic Inactivation of LL-37 by Karilysin, a Novel Virulence Mechanism of <i>Tannerella forsythia</i> . Journal of Innate Immunity, 2010, 2, 288-293.	1.8	50
209	Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle, 2010, 9, 4584-4591.	1.3	64
210	Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function. Biochimie, 2010, 92, 1644-1656.	1.3	47
211	Bacterial and human peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis?. Arthritis Research and Therapy, 2010, 12, 209.	1.6	89
212	A New Pathway of Staphylococcal Pathogenesis: Apoptosis-Like Death Induced by Staphopain B in Human Neutrophils and Monocytes. Journal of Innate Immunity, 2009, 1, 98-108.	1.8	59
213	Kinin Danger Signals Proteolytically Released by Gingipain Induce Fimbriae-Specific IFN-γ- and IL-17-Producing T Cells in Mice Infected Intramucosally with <i>Porphyromonas gingivalis</i> . Journal of Immunology, 2009, 183, 3700-3711.	0.4	57
214	Elafin is specifically inactivated by RgpB from <i>Porphyromonas gingivalis</i> by distinct proteolytic cleavage. Biological Chemistry, 2009, 390, 1313-1320.	1.2	28
215	Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biological Chemistry, 2009, 390, 361-71.	1.2	54
216	High Molecular Weight Gingipains from <i>Porphyromonas gingivalis</i> Induce Cytokine Responses from Human Macrophage-Like Cells via a Nonproteolytic Mechanism. Journal of Innate Immunity, 2009, 1, 109-117.	1.8	25

#	Article	IF	CITATIONS
217	Corruption of Innate Immunity by Bacterial Proteases. Journal of Innate Immunity, 2009, 1, 70-87.	1.8	238
218	Interpain A, a Cysteine Proteinase from Prevotella intermedia, Inhibits Complement by Degrading Complement Factor C3. PLoS Pathogens, 2009, 5, e1000316.	2.1	94
219	Unique Structure and Stability of HmuY, a Novel Heme-Binding Protein of Porphyromonas gingivalis. PLoS Pathogens, 2009, 5, e1000419.	2.1	105
220	Verification of a topology model of PorT as an integral outer-membrane protein in Porphyromonas gingivalis. Microbiology (United Kingdom), 2009, 155, 328-337.	0.7	53
221	Porphyromonas gingivalis induce apoptosis in human gingival epithelial cells through a gingipain-dependent mechanism. BMC Microbiology, 2009, 9, 107.	1.3	86
222	Grafting of antibodies inside integrated microfluidic–microoptic devices by means of automated microcontact printing. Sensors and Actuators B: Chemical, 2009, 140, 278-286.	4.0	13
223	Staphostatins resemble lipocalins, not cystatins in fold. Protein Science, 2009, 12, 2252-2256.	3.1	25
224	Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin. Biochemical Journal, 2009, 419, 159-166.	1.7	40
225	Structural and functional characterization of SplA, an exclusively specific protease of <i>Staphylococcus aureus</i> . Biochemical Journal, 2009, 419, 555-564.	1.7	38
226	Phagocytosis of Staphylococcus aureus by Macrophages Exerts Cytoprotective Effects Manifested by the Upregulation of Antiapoptotic Factors. PLoS ONE, 2009, 4, e5210.	1.1	146
227	Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Archives of Microbiology, 2008, 189, 197-210.	1.0	92
228	The etching of glass patterned by microcontact printing with application to microfluidics and electrophoresis. Sensors and Actuators B: Chemical, 2008, 129, 255-262.	4.0	18
229	Enzymatic Activity of the Staphylococcus aureus SplB Serine Protease is Induced by Substrates Containing the Sequence Trp-Glu-Leu-Gln. Journal of Molecular Biology, 2008, 379, 343-356.	2.0	43
230	Friendly fire against neutrophils: Proteolytic enzymes confuse the recognition of apoptotic cells by macrophages. Biochimie, 2008, 90, 405-415.	1.3	21
231	Dual regulation of interleukin-8 production in human oral epithelial cells upon stimulation with gingipains from Porphyromonas gingivalis. Journal of Medical Microbiology, 2008, 57, 500-507.	0.7	34
232	A New Autocatalytic Activation Mechanism for Cysteine Proteases Revealed by Prevotella intermedia Interpain A. Journal of Biological Chemistry, 2008, 283, 2871-2882.	1.6	47
233	Binding of Complement Inhibitor C4b-Binding Protein Contributes to Serum Resistance of <i>Porphyromonas gingivalis</i> . Journal of Immunology, 2008, 181, 5537-5544.	0.4	70
234	Mechanism of methaemoglobin breakdown by the lysine-specific gingipain of the periodontal pathogen <i>Porphyromonas gingivalis</i> . Biological Chemistry, 2008, 389, 1235-1238.	1.2	29

#	Article	lF	CITATIONS
235	The human fibrinolytic system is a target for the staphylococcal metalloprotease aureolysin. Biochemical Journal, 2008, 410, 157-165.	1.7	41
236	Identification and Characterization of $\ddot{I}fS$, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses. PLoS ONE, 2008, 3, e3844.	1.1	62
237	A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages. PLoS ONE, 2008, 3, e1409.	1.1	374
238	Staphylococcus aureus-Derived Staphopain B, a Potent Cysteine Protease Activator of Plasma Chemerin. Journal of Immunology, 2007, 178, 3713-3720.	0.4	56
239	Biphasic Effect of Gingipains from <i>Porphyromonas gingivalis</i> on the Human Complement System. Journal of Immunology, 2007, 178, 7242-7250.	0.4	154
240	Does the Importance of the C-Terminal Residues in the Maturation of RgpB from Porphyromonas gingivalis Reveal a Novel Mechanism for Protein Export in a Subgroup of Gram-Negative Bacteria?. Journal of Bacteriology, 2007, 189, 833-843.	1.0	120
241	Down-regulation of human extracellular cysteine protease inhibitors by the secreted staphylococcal cysteine proteases, staphopain A and B. Biological Chemistry, 2007, 388, 437-446.	1.2	15
242	The staphostatin family of cysteine protease inhibitors in the genus Staphylococcus as an example of parallel evolution of protease and inhibitor specificity. Biological Chemistry, 2007, 388, 227-235.	1.2	18
243	Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the heam-containing pigment from oxyhaemoglobin. Archives of Biochemistry and Biophysics, 2007, 465, 44-49.	1.4	47
244	Purification and Characterization of Gingipains. Current Protocols in Protein Science, 2007, 49, Unit 21.20.	2.8	48
245	Exploring the SnBinding Pockets in Gingipains by Newly Developed Inhibitors:Â Structure-Based Design, Chemistry, and Activity. Journal of Medicinal Chemistry, 2006, 49, 1744-1753.	2.9	10
246	Functional and Structural Characterization of Spl Proteases from Staphylococcus aureus. Journal of Molecular Biology, 2006, 358, 270-279.	2.0	47
247	Selective inhibition of Porphyromonas gingivalis growth by a factor Xa inhibitor, DX-9065a. Journal of Periodontal Research, 2006, 41, 171-176.	1.4	4
248	Roles of the Host Oxidative Immune Response and Bacterial Antioxidant Rubrerythrin during Porphyromonas gingivalis Infection. PLoS Pathogens, 2006, 2, e76.	2.1	99
249	Gingipains from Porphyromonas gingivalis W83 Synergistically Disrupt Endothelial Cell Adhesion and Can Induce Caspase-Independent Apoptosis. Infection and Immunity, 2006, 74, 5667-5678.	1.0	64
250	Isolation and properties of extracellular proteinases of Penicillium marneffei. Biological Chemistry, 2006, 387, 985-93.	1.2	12
251	Investigations into Ï f B -Modulated Regulatory Pathways Governing Extracellular Virulence Determinant Production in Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 6070-6080.	1.0	44
252	Poison-antidote systems in bacteria: the co-evolution of functional counterparts. Cellular and Molecular Biology, 2006, 52, 18-22.	0.3	3

#	Article	IF	CITATIONS
253	Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases. Molecular Microbiology, 2005, 57, 605-610.	1.2	25
254	Arginine-Specific Gingipains from <i>Porphyromonas gingivalis</i> Stimulate Production of Hepatocyte Growth Factor (Scatter Factor) through Protease-Activated Receptors in Human Gingival Fibroblasts in Culture. Journal of Immunology, 2005, 175, 6076-6084.	0.4	46
255	Inactivation of Membrane Tumor Necrosis Factor Alpha by Gingipains from Porphyromonas gingivalis. Infection and Immunity, 2005, 73, 1506-1514.	1.0	58
256	Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. Journal of Experimental Medicine, 2005, 201, 1669-1676.	4.2	123
257	Cytoplasmic Control of Premature Activation of a Secreted Protease Zymogen: Deletion of Staphostatin B (SspC) in Staphylococcus aureus 8325-4 Yields a Profound Pleiotropic Phenotype. Journal of Bacteriology, 2005, 187, 1751-1762.	1.0	39
258	Neuropeptide Release from Dental Pulp Cells by RgpB via Proteinase-Activated Receptor-2 Signaling. Journal of Immunology, 2005, 174, 5796-5804.	0.4	44
259	Gingipains from Porphyromonas gingivalis W83 Induce Cell Adhesion Molecule Cleavage and Apoptosis in Endothelial Cells. Infection and Immunity, 2005, 73, 1543-1552.	1.0	131
260	A Comparison of Staphostatin B with Standard Mechanism Serine Protease Inhibitors. Journal of Biological Chemistry, 2005, 280, 14669-14674.	1.6	19
261	Genetic characterization of staphopain genes in Staphylococcus aureus. Biological Chemistry, 2004, 385, 1059-1067.	1.2	20
262	Growth phase-dependent production of a cell wall-associated elastinolytic cysteine proteinase by Staphylococcus epidermidis. Biological Chemistry, 2004, 385, 525-35.	1.2	28
263	Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor, HmuR. Biological Chemistry, 2004, 385, 1049-1057.	1.2	23
264	Bacterial Peptidases. , 2004, 12, 132-180.		19
265	The C-terminal domains of the gingipain K polyprotein are necessary for assembly of the active enzyme and expression of associated activities. Molecular Microbiology, 2004, 54, 1393-1408.	1.2	28
266	Aza-Peptide Michael Acceptors:Â A New Class of Inhibitors Specific for Caspases and Other Clan CD Cysteine Proteases. Journal of Medicinal Chemistry, 2004, 47, 1889-1892.	2.9	76
267	The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology (United Kingdom), 2004, 150, 217-228.	0.7	215
268	Prostaphopain B Structure:Â A Comparison of Proregion-Mediated and Staphostatin-Mediated Protease Inhibitionâ€,‡. Biochemistry, 2004, 43, 14306-14315.	1.2	24
269	Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus -Derived Proteinases. Antimicrobial Agents and Chemotherapy, 2004, 48, 4673-4679.	1.4	454
270	Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. Molecular Microbiology, 2003, 49, 1051-1066.	1.2	73

#	Article	IF	CITATIONS
271	A Novel Class of Cysteine Protease Inhibitors:  Solution Structure of Staphostatin A from Staphylococcus aureus. Biochemistry, 2003, 42, 13449-13456.	1.2	30
272	Characterization of the Specificity of Arginine-Specific Gingipains fromPorphyromonas gingivalisReveals Active Site Differences between Different Forms of the Enzymesâ€. Biochemistry, 2003, 42, 11693-11700.	1.2	29
273	Three-dimensional Structure of Mecl. Journal of Biological Chemistry, 2003, 278, 39897-39905.	1.6	46
274	Sequential Autolytic Processing Activates the Zymogen of Arg-gingipain. Journal of Biological Chemistry, 2003, 278, 10458-10464.	1.6	56
275	The Staphostatin-Staphopain Complex. Journal of Biological Chemistry, 2003, 278, 40959-40966.	1.6	59
276	Gingipains, the Major Cysteine Proteinases and Virulence Factors of Porphyromonas gingivalis: Structure, Function and Assembly of Multidomain Protein Complexes. Current Protein and Peptide Science, 2003, 4, 397-407.	0.7	230
277	The Biphasic Virulence Activities of Gingipains: Activation and Inactivation of Host Proteins. Current Protein and Peptide Science, 2003, 4, 443-450.	0.7	102
278	Proteinase-mediated Release of Epithelial Cell-associated CD44. Journal of Biological Chemistry, 2002, 277, 44440-44447.	1.6	34
279	Inhibition of Arginine Gingipains (RgpB and HRgpA) with Benzamidine Inhibitors: Zinc Increases Inhibitory Potency. Biological Chemistry, 2002, 383, 1193-8.	1.2	15
280	Hydrolysis of Epithelial Junctional Proteins by Porphyromonas gingivalis Gingipains. Infection and Immunity, 2002, 70, 2512-2518.	1.0	120
281	The Clostridium ramosum IgA Proteinase Represents a Novel Type of Metalloendopeptidase. Journal of Biological Chemistry, 2002, 277, 11987-11994.	1.6	42
282	Proteolysis of CD14 on Human Gingival Fibroblasts by Arginine-Specific Cysteine Proteinases from Porphyromonas gingivalis Leading to Down-Regulation of Lipopolysaccharide-Induced Interleukin-8 Production. Infection and Immunity, 2002, 70, 3304-3307.	1.0	54
283	Proteolysis of interleukin-6 receptor (IL-6R) by Porphyromonas gingivalis cysteine proteinases (gingipains) inhibits interleukin-6-mediated cell activation. Microbial Pathogenesis, 2002, 32, 173-181.	1.3	45
284	Inhibition of Trypsin-Like Cysteine Proteinases (Gingipains) from Porphyromonas gingivalis by Tetracycline and Its Analogues. Antimicrobial Agents and Chemotherapy, 2001, 45, 2871-2876.	1.4	40
285	Activation of blood coagulation factor IX by gingipains R, arginine-specific cysteine proteinases from Porphyromonas gingivalis. Biochemical Journal, 2001, 353, 325.	1.7	20
286	Inhibition of distant caspase homologues by natural caspase inhibitors. Biochemical Journal, 2001, 357, 575.	1.7	16
287	Activation of blood coagulation factor IX by gingipains R, arginine-specific cysteine proteinases from Porphyromonas gingivalis. Biochemical Journal, 2001, 353, 325-331.	1.7	33
288	Inhibition of distant caspase homologues by natural caspase inhibitors. Biochemical Journal, 2001, 357, 575-580.	1.7	28

#	Article	IF	CITATIONS
289	Activation of protease-activated receptors by gingipains fromPorphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood, 2001, 97, 3790-3797.	0.6	208
290	Degradation of Host Heme Proteins by Lysine- and Arginine-Specific Cysteine Proteinases (Gingipains) of Porphyromonas gingivalis. Journal of Bacteriology, 2001, 183, 5609-5616.	1.0	94
291	Arginine-Specific Protease fromPorphyromonas gingivalis Activates Protease-Activated Receptors on Human Oral Epithelial Cells and Induces Interleukin-6 Secretion. Infection and Immunity, 2001, 69, 5121-5130.	1.0	227
292	Salivary Histatin 5 Is an Inhibitor of Both Host and Bacterial Enzymes Implicated in Periodontal Disease. Infection and Immunity, 2001, 69, 1402-1408.	1.0	103
293	Activation of Human Prothrombin by Arginine-specific Cysteine Proteinases (Gingipains R) from Porphyromonas gingivalis *. Journal of Biological Chemistry, 2001, 276, 18984-18991.	1.6	64
294	Porphyromonas gingivalis DPP-7 Represents a Novel Type of Dipeptidylpeptidase. Journal of Biological Chemistry, 2001, 276, 6299-6305.	1.6	42
295	Loss of Clumping Factor B Fibrinogen Binding Activity byStaphylococcus aureus Involves Cessation of Transcription, Shedding and Cleavage by Metalloprotease. Journal of Biological Chemistry, 2001, 276, 29969-29978.	1.6	134
296	Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontology 2000, 2000, 24, 153-192.	6.3	318
297	Bacterial proteinases as targets for the development of second-generation antibiotics. BBA - Proteins and Proteomics, 2000, 1477, 35-50.	2.1	132
298	Two Allelic Forms of the Aureolysin Gene (aur) within Staphylococcus aureus. Infection and Immunity, 2000, 68, 973-976.	1.0	44
299	Emerging Family of Proline-Specific Peptidases of Porphyromonas gingivalis : Purification and Characterization of Serine Dipeptidyl Peptidase, a Structural and Functional Homologue of Mammalian Prolyl Dipeptidyl Peptidase IV. Infection and Immunity, 2000, 68, 1176-1182.	1.0	64
300	Comparison of pathogenic properties between two types of arginine-specific cysteine proteinases (gingipains-R) fromPorphyromonas gingivalis. Microbial Pathogenesis, 2000, 29, 155-163.	1.3	31
301	Prolyl Tripeptidyl Peptidase from Porphyromonas gingivalis. Journal of Biological Chemistry, 1999, 274, 9246-9252.	1.6	81
302	Comparative Cleavage Sites within the Reactive-Site Loop of Native and Oxidized α1-Proteinase Inhibitor by Selected Bacterial Proteinases. Biological Chemistry, 1999, 380, 1211-6.	1.2	31
303	Purification and Characterization of a Novel Cysteine Proteinase (Periodontain) from Porphyromonas gingivalis. Journal of Biological Chemistry, 1999, 274, 12245-12251.	1.6	58
304	Role of Gingipains R in the Pathogenesis of Porphyromonas gingivalisâ€Mediated Periodontal Disease. Clinical Infectious Diseases, 1999, 28, 456-465.	2.9	107
305	Rapid and Efficient Inactivation of IL-6 Gingipains, Lysine- and Arginine-Specific Proteinases from Porphyromonas Gingivalis. Biochemical and Biophysical Research Communications, 1999, 261, 598-602.	1.0	89
306	Transposition of the Endogenous Insertion Sequence Element IS <i>1126</i> Modulates Gingipain Expression in <i>Porphyromonas gingivalis</i> . Infection and Immunity, 1999, 67, 5012-5020.	1.0	31

#	Article	IF	CITATIONS
307	Purification, Characterization, and Sequence Analysis of a Potential Virulence Factor from <i>Porphyromonas gingivalis</i> , Peptidylarginine Deiminase. Infection and Immunity, 1999, 67, 3248-3256.	1.0	323
308	Crystallization and preliminary Xâ€ray diffraction analysis of gingipain R2 from <i>Porphyromonas gingivalis</i> in complex with Hâ€Dâ€Pheâ€Pheâ€Argâ€chloromethylketone. Protein Science, 1998, 7, 1259-12	61 <mark>.31</mark>	6
309	Cleavage and activation of proteinaseâ€activated receptorâ€2 on human neutrophils by gingipainâ€R from <i>Porphyromonas gingivalis</i> . FEBS Letters, 1998, 435, 45-48.	1.3	150
310	Modulation of interleukinâ€8 activity by gingipains from <i>Porphyromonas gingivalis</i> : implications for pathogenicity of periodontal disease. FEBS Letters, 1998, 440, 282-286.	1.3	124
311	Comparative Properties of Two Cysteine Proteinases (Gingipains R), the Products of Two Related but Individual Genes ofPorphyromonas gingivalis. Journal of Biological Chemistry, 1998, 273, 21648-21657.	1.6	155
312	Inactivation of Tumor Necrosis Factor-α by Proteinases (Gingipains) from the Periodontal Pathogen, Porphyromonas gingivalis. Journal of Biological Chemistry, 1998, 273, 6611-6614.	1.6	135
313	Genetic Variation of <i>Porphyromonas gingivalis </i> Genes Encoding Gingipains, Cysteine Proteinases with Arginine or Lysine Specificity. Biological Chemistry, 1998, 379, 205-212.	1.2	65
314	A Peptide Domain on Gingipain R Which Confers Immunity against Porphyromonas gingivalis Infection in Mice. Infection and Immunity, 1998, 66, 4108-4114.	1.0	1
315	A Peptide Domain on Gingipain R Which Confers Immunity against <i>Porphyromonas gingivalis</i> Infection in Mice. Infection and Immunity, 1998, 66, 4108-4114.	1.0	77
316	Activation of Blood Coagulation Factor X by Arginine-specific Cysteine Proteinases (Gingipain-Rs) from Porphyromonas gingivalis. Journal of Biological Chemistry, 1997, 272, 16062-16067.	1.6	104
317	Molecular Cloning and Characterization of Porphyromonas gingivalis Lysine-specific Gingipain. Journal of Biological Chemistry, 1997, 272, 1595-1600.	1.6	124
318	Titration and Mapping of the Active Site of Cysteine Proteinases from Porphyromonas gingivalis (Gingipains) Using Peptidyl Chloromethanes. Biological Chemistry, 1997, 378, 223-30.	1.2	157
319	Biosynthesis of α1-Proteinase Inhibitor by Human Lung-derived Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 8250-8255.	1.6	125
320	Serpin α ₁ proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy. Protein Science, 1996, 5, 2226-2235.	3.1	27
321	Cleavage of the Human C5A Receptor by Protienases Derived from Porphyromonas Gingivalis. Advances in Experimental Medicine and Biology, 1996, 389, 155-164.	0.8	37
322	Molecular Cloning and Structural Characterization of the Arg-gingipain Proteinase of Porphyromonas gingivalis. Journal of Biological Chemistry, 1995, 270, 1007-1010.	1.6	191
323	Regulation of α1-antichymortrypsin synthesis in cells of epithelial origin. FEBS Letters, 1995, 359, 262-266.	1.3	27
324	Cleavage of Human Immunoglobulins by Proteinase from Staphylococcus Aureus. Advances in Experimental Medicine and Biology, 1995, 371A, 613-616.	0.8	7

JAN S ΡΟΤΕΜΡΑ

#	Article	IF	CITATIONS
325	Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. Immunology Letters, 1992, 31, 259-265.	1.1	67
326	Effect of metalloproteinase from Staphylococcus aureus on in vitro stimulation of human lymphocytes. Immunology Letters, 1991, 27, 225-230.	1.1	25
327	Isolation of Nine Human Plasma Proteinase Inhibitors by Sequential Affinity Chromatography. Preparative Biochemistry and Biotechnology, 1990, 20, 63-74.	0.4	18
328	Comparative properties of human α-1-proteinase inhibitor glycosylation variants. FEBS Letters, 1990, 272, 125-127.	1.3	25
329	Chemoattractant activity of Staphylococcus aureus serine proteinase modified human plasma ?-1-proteinase inhibitor. Antonie Van Leeuwenhoek, 1989, 56, 361-365.	0.7	6
330	Stabilization vs. degradation of Staphylococcus aureus metalloproteinase. Biochimica Et Biophysica Acta - General Subjects, 1989, 993, 301-304.	1.1	11
331	Effect of calcium binding on conformational changes of staphylococcal metalloproteinase measured by means of intrinsic protein fluorescence. BBA - Proteins and Proteomics, 1986, 871, 177-181.	2.1	23