
Li-Ting Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4119411/publications.pdf Version: 2024-02-01

LI-TING YAN

#	Article	IF	CITATIONS
1	Development of Carbonâ€Based Electrocatalysts for Ambient Nitrogen Reduction Reaction: Challenges and Perspectives. ChemElectroChem, 2022, 9, .	3.4	9
2	Metalâ€Organicâ€Frameworkâ€Based Singleâ€Atomic Catalysts for Energy Conversion and Storage: Principles, Advances, and Theoretical Understandings. Advanced Sustainable Systems, 2022, 6, .	5.3	7
3	Competitive Coordinationâ€Oriented Monodispersed Ruthenium Sites in Conductive MOF/LDH Heteroâ€Nanotree Catalysts for Efficient Overall Water Splitting in Alkaline Media. Advanced Materials, 2022, 34, e2107488.	21.0	103
4	Facile Fabrication of a Foamed Ag ₃ CuS ₂ Film as an Efficient Self-Supporting Electrocatalyst for Ammonia Electrolysis Producing Hydrogen. ACS Applied Materials & Interfaces, 2022, 14, 9036-9045.	8.0	7
5	Controllably regulating ion transport in lithium metal batteries via pore effect of metal–organic framework-based separators. Applied Surface Science, 2022, 589, 152885.	6.1	20
6	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
7	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	7
8	Defect-engineered MOF-808 with highly exposed Zr sites as highly efficient catalysts for catalytic transfer hydrogenation of furfural. Fuel, 2022, 327, 125085.	6.4	26
9	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie, 2021, 133, 4620-4624.	2.0	33
10	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie - International Edition, 2021, 60, 4570-4574.	13.8	117
11	Lattice Matching Growth of Conductive Hierarchical Porous MOF/LDH Heteronanotube Arrays for Highly Efficient Water Oxidation. Advanced Materials, 2021, 33, e2006351.	21.0	155
12	Metal-organic framework derived porous flakes of cobalt chalcogenides (CoX, XÂ=ÂO, S, Se and Te) rooted in carbon fibers as flexible electrode materials for pseudocapacitive energy storage. Electrochimica Acta, 2021, 369, 137681.	5.2	16
13	Thermally Driven Amorphousâ€Crystalline Phase Transition of Carbonized Polymer Dots for Multicolor Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2100421.	7.3	38
14	Thermally Driven Amorphousâ€Crystalline Phase Transition of Carbonized Polymer Dots for Multicolor Roomâ€Temperature Phosphorescence (Advanced Optical Materials 16/2021). Advanced Optical Materials, 2021, 9, 2170060.	7.3	5
15	Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption. Journal of Materials Chemistry C, 2021, 9, 4847-4853.	5.5	44
16	Electrochemical Surface Restructuring of Phosphorus-Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution. Nano-Micro Letters, 2021, 13, 215.	27.0	63
17	Electrochemical ammonia oxidation reaction on defect-rich TiO nanofibers: Experimental and theoretical studies. International Journal of Hydrogen Energy, 2021, 46, 39208-39215.	7.1	7
18	Graphitic carbon nitride catalyzes selective oxidative dehydrogenation of propane. Applied Catalysis B: Environmental, 2020, 262, 118277.	20.2	47

LI-TING YAN

#	Article	IF	CITATIONS
19	A Freestanding 3D Heterostructure Film Stitched by MOFâ€Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn–Air Batteries. Advanced Materials, 2020, 32, e2003313.	21.0	216
20	Heterostructure Films: A Freestanding 3D Heterostructure Film Stitched by MOFâ€Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn–Air Batteries (Adv. Mater. 48/2020). Advanced Materials, 2020, 32, 2070362.	21.0	2
21	Nanoantenna Featuring Carbon Microtubes Derived from Bristle Fibers of Plane Trees for Supercapacitors in an Organic Electrolyte. ACS Applied Energy Materials, 2020, 3, 12627-12634.	5.1	9
22	Multimetal Incorporation into 2D Conductive Metal–Organic Framework Nanowires Enabling Excellent Electrocatalytic Oxidation of Benzylamine to Benzonitrile. ACS Applied Materials & Interfaces, 2020, 12, 24786-24795.	8.0	36
23	<i>In situ</i> semi-transformation from heterometallic MOFs to Fe–Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale, 2020, 12, 14514-14523.	5.6	94
24	Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochimica Acta, 2020, 354, 136717.	5.2	44
25	Metal–Organic Frameworks Enabled High-Performance Separators for Safety-Reinforced Lithium Ion Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16612-16619.	6.7	43
26	Superstructure of a Metal–Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano, 2019, 13, 2901-2912.	14.6	47
27	One-step and scalable synthesis of Ni2P nanocrystals encapsulated in N,P-codoped hierarchically porous carbon matrix using a bipyridine and phosphonate linked nickel metal–organic framework as highly efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 297, 755-766.	5.2	44
28	Impact of moderative ligand hydrolysis on morphology evolution and the morphology-dependent breathing effect performance of MIL-53(Al). CrystEngComm, 2018, 20, 2102-2111.	2.6	9
29	Boosting ORR Catalytic Activity by Integrating Pyridineâ€N Dopants, a High Degree of Graphitization, and Hierarchical Pores into a MOFâ€Derived Nâ€Doped Carbon in a Tandem Synthesis. Chemistry - an Asian Journal, 2018, 13, 1318-1326.	3.3	24
30	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	6.7	85
31	Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 1682-1691.	10.3	168
32	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	9.0	33
33	Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 17371-17377.	10.3	75
34	High oxygen reduction activity on a metal–organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. Journal of Materials Chemistry A, 2017, 5, 789-795.	10.3	171
35	In Situ Synthesis Strategy for Hierarchically Porous Ni ₂ P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.	8.0	158
36	Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. Journal of Materials Chemistry A, 2017, 5, 22372-22379.	10.3	159

LI-TING YAN

#	Article	IF	CITATIONS
37	Metalâ€Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1703455.	14.9	597
38	Carbonates (bicarbonates)/reduced graphene oxide as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 24645-24650.	10.3	21
39	Metal-organic Frameworks Derived CoS2-Co/N-doped Porous Carbon with Extremely High Electrocatalytic Stability for the Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2016, 11, 9575-9584.	1.3	11