Justin O Zoppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4119364/publications.pdf

Version: 2024-02-01

40 papers

3,140 citations

331670 21 h-index 289244 40 g-index

44 all docs

44 docs citations

times ranked

44

4466 citing authors

#	Article	IF	Citations
1	Chemical Modification of Reducing Endâ€Groups in Cellulose Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 66-87.	13.8	83
2	Chemische Modifizierung der reduzierenden Enden von Cellulosenanokristallen. Angewandte Chemie, 2021, 133, 66-88.	2.0	2
3	Mineral-based composition with deliquescent salt as flame retardant for melamine–urea–formaldehyde (MUF)-bonded wood composites. Wood Science and Technology, 2021, 55, 5-32.	3.2	10
4	Cellulose Nanofiber Nanocomposite Pervaporation Membranes for Ethanol Recovery. ACS Applied Nano Materials, 2021, 4, 568-579.	5. 0	22
5	Asymmetric water transport in dense leaf cuticles and cuticle-inspired compositionally graded membranes. Nature Communications, 2021, 12, 1267.	12.8	19
6	Challenges in Synthesis and Analysis of Asymmetrically Grafted Cellulose Nanocrystals via Atom Transfer Radical Polymerization. Biomacromolecules, 2021, 22, 2702-2717.	5.4	14
7	Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals. Biomacromolecules, 2021, 22, 3552-3564.	5.4	10
8	Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42486-42501.	8.0	11
9	Patience is a virtue: self-assembly and physico-chemical properties of cellulose nanocrystal allomorphs. Nanoscale, 2020, 12, 17480-17493.	5.6	37
10	Surface Modification of Nanocellulosics and Functionalities., 2020, , 17-63.		2
11	Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105827.	7.6	40
12	One-Component Nanocomposites Based on Polymer-Grafted Cellulose Nanocrystals. Macromolecules, 2020, 53, 821-834.	4.8	26
13	Influence of the Salt Concentration on the Properties of Saltâ€Free Polyelectrolyte Complex Membranes. Macromolecular Materials and Engineering, 2019, 304, 1900245.	3. 6	9
14	Bioâ€Inspired, Selfâ€Toughening Polymers Enabled by Plasticizerâ€Releasing Microcapsules. Advanced Materials, 2019, 31, e1807212.	21.0	19
15	Polymer Composites: Bioâ€Inspired, Selfâ€Toughening Polymers Enabled by Plasticizerâ€Releasing Microcapsules (Adv. Mater. 14/2019). Advanced Materials, 2019, 31, 1970103.	21.0	O
16	Stiffnessâ€Changing of Polymer Nanocomposites with Cellulose Nanocrystals and Polymeric Dispersant. Macromolecular Rapid Communications, 2019, 40, 1800910.	3.9	10
17	Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Current Opinion in Solid State and Materials Science, 2019, 23, 74-91.	11.5	75
18	Functionally Graded Polyurethane/Cellulose Nanocrystal Composites. Macromolecular Materials and Engineering, 2018, 303, 1700661.	3.6	7

#	Article	IF	Citations
19	Polymer nanocomposites with cellulose nanocrystals made by coâ€precipitation. Journal of Applied Polymer Science, 2018, 135, 45648.	2.6	18
20	Thermoresponsive Liquid Crystals: Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts (Small 46/2018). Small, 2018, 14, 1870218.	10.0	2
21	11th Young Faculty Meeting, 5th June 2018. Chimia, 2018, 72, 550.	0.6	O
22	Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts. Small, 2018, 14, e1802060.	10.0	34
23	Grafting Polymers <i>from</i> Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules, 2018, 51, 6157-6189.	4.8	175
24	Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews, 2017, 117, 1105-1318.	47.7	776
25	Cellulose Nanocrystals with Tethered Polymer Chains: Chemically Patchy versus Uniform Decoration. ACS Macro Letters, 2017, 6, 892-897.	4.8	47
26	Cellulose Nanocrystals: Surface Modification, Applications and Opportunities at Interfaces. Chimia, 2017, 71, 376.	0.6	22
27	Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. Biomacromolecules, 2016, 17, 1404-1413.	5.4	37
28	Delignification of Lignocellulosic Biomass and Its Effect on Subsequent Enzymatic Hydrolysis. BioResources, 2015, 10, .	1.0	23
29	Effects of Delignification on Crystalline Cellulose in Lignocellulose Biomass Characterized by Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction. Bioenergy Research, 2015, 8, 1750-1758.	3.9	33
30	Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media. Carbohydrate Polymers, 2015, 126, 23-31.	10.2	21
31	Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix. Bioresource Technology, 2015, 197, 1-6.	9.6	24
32	Synthesis of Cellulose Nanocrystals Carrying Tyrosine Sulfate Mimetic Ligands and Inhibition of Alphavirus Infection. Biomacromolecules, 2014, 15, 1534-1542.	5.4	86
33	Liquid crystalline thermosets based on anisotropic phases of cellulose nanocrystals. Cellulose, 2013, 20, 2569-2582.	4.9	18
34	Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science, 2012, 369, 202-209.	9.4	315
35	Surface Interaction Forces of Cellulose Nanocrystals Grafted with Thermoresponsive Polymer Brushes. Biomacromolecules, 2011, 12, 2788-2796.	5.4	75
36	Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization. Biomacromolecules, 2010, 11, 674-681.	5.4	491

#	Article	IF	CITATIONS
37	Poly($\langle i \rangle N \langle l \rangle$ -isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules, 2010, 11, 2683-2691.	5.4	261
38	Reinforcing Poly($\hat{l}\mu$ -caprolactone) Nanofibers with Cellulose Nanocrystals. ACS Applied Materials & amp; Interfaces, 2009, 1, 1996-2004.	8.0	235
39	A variational solution of the time-dependent Schrodinger equation by a restricted superposition of frozen Gaussian wavepackets. Chemical Physics Letters, 2005, 407, 308-314.	2.6	9
40	Evaluating the use of calcium hydrogen phosphate dihydrate as a mineralâ€based fire retardant for application in melamineâ€ureaâ€formaldehyde (MUF)â€bonded woodâ€based composite materials. Fire and Materials, 0, , .	2.0	4