
Fredrik Björefors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fiber Optic Monitoring of Composite Lithium Iron Phosphate Cathodes in Pouch Cell Batteries. ACS Applied Energy Materials, 2022, 5, 870-881.	5.1	10
2	Fiber Optic Sensors for Detection of Sodium Plating in Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 6219-6227.	5.1	10
3	Fibre Optic Sensor for Characterisation of Lithiumâ€lon Batteries. ChemSusChem, 2020, 13, 5731-5739.	6.8	19
4	Capacity Limiting Effects for Freestanding, Monolithic TiO ₂ Nanotube Electrodes with High Mass Loadings. ACS Applied Energy Materials, 2020, 3, 4638-4649.	5.1	17
5	Electronic changes in poly(3,4-ethylenedioxythiophene)-coated LiFeSO4F during electrochemical lithium extraction. Journal of Power Sources, 2019, 418, 84-89.	7.8	2
6	Identifying the Electrochemical Processes in LiFeSO ₄ F Cathodes for Lithium Ion Batteries. ChemElectroChem, 2017, 4, 1896-1907.	3.4	5
7	Monitoring Li _{<i>x</i>} FeSO ₄ F (<i>x</i> = 1, 0.5, 0) Phase Distributions in Operando To Determine Reaction Homogeneity in Porous Battery Electrodes. Chemistry of Materials, 2017, 29, 7159-7169.	6.7	6
8	Formation of Gold Nanoparticle Size and Density Gradients via Bipolar Electrochemistry. ChemElectroChem, 2016, 3, 378-382.	3.4	28
9	DPPTE Thiolipid Self-Assembled Monolayer: A Critical Assay. Langmuir, 2016, 32, 11560-11572.	3.5	5
10	Tailored activated carbons for supercapacitors derived from hydrothermally carbonized sugars by chemical activation. RSC Advances, 2016, 6, 110629-110641.	3.6	17
11	Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries. Journal of Power Sources, 2016, 325, 513-524.	7.8	54
12	SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15758-15766.	8.0	105
13	A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide based electrolyte for Si-electrodes. Journal of Power Sources, 2016, 301, 105-112.	7.8	33
14	Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials. Scientific World Journal, The, 2015, 2015, 1-11.	2.1	13
15	Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chemistry of Materials, 2015, 27, 2591-2599.	6.7	494
16	Towards high throughput corrosion screening using arrays of bipolar electrodes. Journal of Electroanalytical Chemistry, 2015, 747, 77-82.	3.8	42
17	Hybrid Energy Storage Devices Based on Monolithic Electrodes Containing Well-defined TiO2 Nanotube Size Gradients. Electrochimica Acta, 2015, 176, 1393-1402.	5.2	28
18	Formation of tavorite-type LiFeSO4F followed by in situ X-ray diffraction. Journal of Power Sources, 2015, 298, 363-368.	7.8	5

Fredrik BjĶrefors

#	Article	IF	CITATIONS
19	A Mössbauer spectroscopy study of polyol synthesized tavorite LiFeSO4F. Hyperfine Interactions, 2014, 226, 229-236.	0.5	7
20	Identification of an Intermediate Phase, Li _{1/2} FeSO ₄ F, Formed during Electrochemical Cycling of <i>Tavorite</i> LiFeSO ₄ F. Chemistry of Materials, 2014, 26, 4620-4628.	6.7	13
21	Understanding and Controlling the Surface Chemistry of LiFeSO ₄ F for an Enhanced Cathode Functionality. Chemistry of Materials, 2013, 25, 3020-3029.	6.7	47
22	Bipolar electrochemistry for high-throughput corrosion screening. Electrochemistry Communications, 2013, 34, 274-277.	4.7	48
23	High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. Journal of Materials Chemistry A, 2013, 1, 8160.	10.3	101
24	Potential and Current Density Distributions at Electrodes Intended for Bipolar Patterning. Analytical Chemistry, 2009, 81, 453-459.	6.5	73
25	Formation of Molecular Gradients on Bipolar Electrodes. Angewandte Chemie - International Edition, 2008, 47, 3034-3036.	13.8	122
26	Self-Arrangement Among Charge-Stabilized Gold Nanoparticles on a Dithiothreitol Reactivated Octanedithiol Monolayer. Nano Letters, 2008, 8, 3989-3992.	9.1	39
27	Electrochemical Detection Based on Redox Cycling Using Interdigitated Microarray Electrodes at µL/min Flow Rates. Electroanalysis, 2000, 12, 255-261.	2.9	27