
Guangyu Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118629/publications.pdf Version: 2024-02-01

CHANCYLI SUN

#	Article	IF	CITATIONS
1	Co-adsorption behaviors of asphaltenes and different flow improvers and their impacts on the interfacial viscoelasticity. Chinese Journal of Chemical Engineering, 2022, 48, 149-157.	3.5	4
2	Modification effect of macroporous comb-like polymeric pour point depressants on the flow behavior of model waxy oils. Fuel, 2022, 314, 123113.	6.4	18
3	Multi-alkylated aromatic amides amphiphiles effectively stabilize the associated asphaltene particles in crude oil. Journal of Petroleum Science and Engineering, 2022, 212, 110204.	4.2	7
4	Effects of Asphaltene Concentration and Test Temperature on the Stability of Water-in-Model Waxy Crude Oil Emulsions. ACS Omega, 2022, 7, 8023-8035.	3.5	9
5	The formation and aggregation of hydrate in W/O emulsion containing different compositions: A review. Chemical Engineering Journal, 2022, 445, 136800.	12.7	21
6	Prediction of Wax Deposits for Crude Pipelines Using Time-Dependent Data Mining. SPE Journal, 2021, , 1-22.	3.1	3
7	Co-adsorption behavior of asphaltenes and carboxylic acids with different alkyl chain lengths and its effects on the stability of water/model oil emulsion. Fuel, 2021, 295, 120603.	6.4	21
8	Study on the Interactive Effects of Solid Particles and Asphaltenes on the Interfacial Structure and Stability of a Water-in-Model Oil Emulsion. Langmuir, 2021, 37, 10827-10837.	3.5	5
9	Investigation on the mechanism of wax deposition inhibition induced by asphaltenes and wax inhibitors. Journal of Petroleum Science and Engineering, 2021, 204, 108723.	4.2	28
10	Two effects of wax crystals on stabilizing water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126884.	4.7	15
11	Adsorption behavior and interfacial dilational properties of asphaltenes at the interface between <i>n</i> -decane/ <i>1±</i> -methylnaphthalene and brine water. Journal of Dispersion Science and Technology, 2020, 41, 918-928.	2.4	10
12	Synthesis and evaluation of an environmentâ€friendly terpolymer CaCO ₃ scale inhibitor for oilfield produced water with better salt and temperature resistance. Journal of Applied Polymer Science, 2020, 137, 48460.	2.6	22
13	Synergistic effect of asphaltenes and octadecyl acrylate-maleic anhydride copolymers modified by aromatic pendants on the flow behavior of model waxy oils. Fuel, 2020, 260, 116381.	6.4	27
14	A novel heterogeneous wax deposit structure triggered by polyethylene vinyl acetate (EVA) wax inhibitors. Journal of Dispersion Science and Technology, 2020, 41, 2002-2013.	2.4	5
15	Experimental investigation on the interactions of asphaltenes and ethylene–vinyl acetate (EVA) copolymeric flow improvers at the interface between brine water and model oil. Fuel, 2020, 262, 116530.	6.4	5
16	Experimental Study on the Effective Viscosity of Unstable CO ₂ Flooding Produced Fluid with the Energy Dissipation Method. Industrial & Engineering Chemistry Research, 2020, 59, 1308-1318.	3.7	3
17	Effect of doped emulsifiers on the morphology of precipitated wax crystals and the gel structure of water-in-model-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125434.	4.7	16
18	Characterization of the Precipitation Modes of Paraffin Wax in Water-in-Model-Oil Emulsions. Energy & Fuels, 2020, 34, 16014-16022.	5.1	12

Guangyu Sun

#	Article	IF	CITATIONS
19	Effect of the Interactions between Asphaltenes and Amphiphilic Dodecylbenzenesulfonic Acid on the Stability and Interfacial Properties of Model Oil Emulsions. Energy & Fuels, 2020, 34, 6951-6961.	5.1	14
20	Polar asphaltenes facilitate the flow improving performance of polyethylene-vinyl acetate. Fuel Processing Technology, 2020, 207, 106481.	7.2	29
21	Polarity effects of asphaltene subfractions on the stability and interfacial properties of water-in-model oil emulsions. Fuel, 2020, 269, 117450.	6.4	51
22	Experimental Investigation on the Interactions between Asphaltenes and Comb-like Octadecyl Acrylate (OA) Polymeric Flow Improvers at the Model Oil/Water Interface. Energy & Fuels, 2020, 34, 2693-2702.	5.1	7
23	Effect of Asphaltene Polarity on Wax Precipitation and Deposition Characteristics of Waxy Oils. Energy & Fuels, 2019, 33, 7225-7233.	5.1	28
24	Synergetic effect of resins and asphaltenes on water/oil interfacial properties and emulsion stability. Fuel, 2019, 252, 581-588.	6.4	62
25	Effect of Polyethylene-Vinyl Acetate Pour Point Depressants on the Flow Behavior of Degassed Changqing Waxy Crude Oil before/after scCO ₂ Extraction. Energy & Fuels, 2019, 33, 4931-4938.	5.1	9
26	Experimental Investigation of the Rheological Properties of a Typical Waxy Crude Oil Treated with Supercritical CO ₂ and the Stability Change in Its Emulsion. Energy & Fuels, 2019, 33, 4731-4739.	5.1	12
27	Influence of the Aggregation State of Asphaltenes on Structural Properties of the Model Oil/Brine Interface. Energy & Fuels, 2019, 33, 2994-3002.	5.1	24
28	Poly(aminopropyl/methyl)silsesquioxane microspheres improve the flowability of model waxy oils associated with asphaltenes. Fuel, 2019, 243, 60-69.	6.4	9
29	Impact of the Composition and Content of Dissolved-State Paraffins in Model Oil on the Aggregation State of Asphaltenes and the Stability of Water-in-Model Oil Emulsion. Energy & Fuels, 2019, 33, 12191-12201.	5.1	16
30	Morphology-controlled synthesis of polymethylsilsesquioxane (PMSQ) microsphere and its applications in enhancing the thermal properties and flow improving ability of ethylene-vinyl acetate copolymer. Powder Technology, 2018, 329, 137-148.	4.2	16
31	Effects of Supercritical CO ₂ Treatment on the Stability of Water-in-Heavy-Oil Emulsion and Their Mechanisms. Energy & Fuels, 2018, 32, 1358-1364.	5.1	5
32	Polyoctadecylacrylate (POA) and resin-stabilized asphaltene synergistically improve the flow behavior of model waxy oils. Petroleum Science and Technology, 2018, 36, 531-539.	1.5	9
33	Comb-like Polyoctadecyl Acrylate (POA) Wax Inhibitor Triggers the Formation of Heterogeneous Waxy Oil Gel Deposits in a Cylindrical Couette Device. Energy & Fuels, 2018, 32, 373-383.	5.1	27
34	Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 1. Effect of Wax Content and the Synergistic Mechanism. Energy & Fuels, 2018, 32, 1567-1578.	5.1	66
35	Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 2. Effect of Asphaltene Content. Energy & Fuels, 2018, 32, 5834-5845.	5.1	32
36	Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosage of the amino-functionalized polymethylsilsesquioxane (PAMSQ) microsphere. Fuel, 2018, 220, 167-176.	6.4	53

Guangyu Sun

#	Article	IF	CITATIONS
37	lsothermal Crystallization Properties and Improved Rheological Performance of Waxy Crude Oil using Polyoctadecylacrylate-Modified Montmorillonite Composite as a Pour Point Depressant. Clays and Clay Minerals, 2018, 66, 233-244.	1.3	9
38	Effect of Thermal Treatment Temperature on the Flowability and Wax Deposition Characteristics of Changqing Waxy Crude Oil. Energy & Fuels, 2018, 32, 10605-10615.	5.1	32
39	Effects of Dissolved CO2 on the Crude Oil/Water Interfacial Viscoelasticity and the Macroscopic Stability of Water-in-Crude Oil Emulsion. Energy & Fuels, 2018, 32, 9330-9339.	5.1	20
40	Ethylene-Vinyl Acetate Copolymer (EVA) and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 3. Effect of Vinyl Acetate Content. Energy & Fuels, 2018, 32, 8374-8382.	5.1	32
41	Oil dispersible polymethylsilsesquioxane (PMSQ) microspheres improve the flow behavior of waxy crude oil through spacial hindrance effect. Fuel, 2017, 199, 4-13.	6.4	51
42	Characterization of the viscosity reducing efficiency of CO2 on heavy oil by a newly developed pressurized stirring-viscometric apparatus. Journal of Petroleum Science and Engineering, 2017, 156, 299-306.	4.2	15
43	Experimental Investigation on the Gelation Process and Gel Structure of Water-in-Waxy Crude Oil Emulsion. Energy & Fuels, 2017, 31, 271-278.	5.1	22
44	Effect of oil dispersible polymethylsilsesquioxane microspheres on the formation and breakage of model waxy oil gels. Fuel, 2017, 209, 424-433.	6.4	13
45	Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosages of the polymethylsilsesquioxane (PMSQ) microsphere: An experimental study. Fuel, 2017, 207, 204-213.	6.4	59
46	Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel, 2016, 184, 544-554.	6.4	92
47	Start-up flow behavior of pipelines transporting waxy crude oil emulsion. Journal of Petroleum Science and Engineering, 2016, 147, 746-755.	4.2	36
48	Influences of different functional groups on the performance of polyoctadecyl acrylate pour point depressant. Petroleum Science and Technology, 2016, 34, 1712-1719.	1.5	24
49	Structural breakdown and recovery of waxy crude oil emulsion gels. Rheologica Acta, 2015, 54, 817-829.	2.4	19
50	The influence of the heating temperature on the yield stress and pour point of waxy crude oils. Journal of Petroleum Science and Engineering, 2015, 135, 476-483.	4.2	33
51	Structural Behaviors of Waxy Crude Oil Emulsion Gels. Energy & amp; Fuels, 2014, 28, 3718-3729.	5.1	51