
Louise Dalgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118578/publications.pdf Version: 2024-02-01

LOUISE DALCAARD

#	Article	IF	CITATIONS
1	Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium. Molecular Therapy - Methods and Clinical Development, 2022, 24, 171-180.	1.8	11
2	The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines, 2022, 10, 482.	1.4	6
3	Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells. Frontiers in Endocrinology, 2022, 13, 853863.	1.5	1
4	DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring. Biomedicines, 2022, 10, 1244.	1.4	2
5	The microRNA-29 family: role in metabolism and metabolic disease. American Journal of Physiology - Cell Physiology, 2022, 323, C367-C377.	2.1	20
6	The Predictive Value of miR-16, -29a and -134 for Early Identification of Gestational Diabetes: A Nested Analysis of the DALI Cohort. Cells, 2021, 10, 170.	1.8	35
7	Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Molecular Therapy - Methods and Clinical Development, 2021, 20, 726-739.	1.8	20
8	Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. IScience, 2021, 24, 102379.	1.9	17
9	A bird's eye view of the dynamics of pancreatic βâ€cell heterogeneity. Acta Physiologica, 2021, 233, e13664.	1.8	6
10	Dietary supplementation with sulforaphane ameliorates skin aging through activation of the Keap1-Nrf2 pathway. Journal of Nutritional Biochemistry, 2021, 98, 108817.	1.9	11
11	Manipulating cellular microRNAs and analyzing high-dimensional gene expression data using machine learning workflows. STAR Protocols, 2021, 2, 100910.	0.5	1
12	Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells, 2020, 9, 2228.	1.8	38
13	Levels of Circulating miRâ€122 are Associated with Weight Loss and Metabolic Syndrome. Obesity, 2020, 28, 493-501.	1.5	30
14	Regulation of integrin α6A by lactogenic hormones in rat pancreatic βâ€cells: Implications for the physiological adaptation to pregnancy. Acta Physiologica, 2020, 229, e13454.	1.8	8
15	Metformin decreases miR-122, miR-223 and miR-29a in women with polycystic ovary syndrome. Endocrine Connections, 2020, 9, 1075-1084.	0.8	20
16	Assessment of β-Cell Replication in Isolated Rat Islets of Langerhans. Methods in Molecular Biology, 2019, 2029, 25-35.	0.4	0
17	Physiological phenotyping of mammalian cell lines by enzymatic activity fingerprinting of key carbohydrate metabolic enzymes: a pilot and feasibility study. BMC Research Notes, 2019, 12, 682.	0.6	4
18	Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Scientific Reports, 2019, 9, 4758.	1.6	56

LOUISE DALGAARD

#	Article	IF	CITATIONS
19	Levels of circulating insulin cell-free DNA in women with polycystic ovary syndrome – a longitudinal cohort study. Reproductive Biology and Endocrinology, 2019, 17, 34.	1.4	8
20	microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Scientific Reports, 2019, 9, 5836.	1.6	45
21	Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome. Frontiers in Medicine, 2019, 6, 242.	1.2	27
22	Editorial commentary: Wanted: MicroRNAs to the aid of the diabetic foot. Trends in Cardiovascular Medicine, 2019, 29, 138-140.	2.3	1
23	The long noncoding RNA MALAT1 predicts human islet isolation quality. JCI Insight, 2019, 4, .	2.3	17
24	Trefoil factor 3 in perinatal pancreas is increased by gestational low protein diet and associated with accelerated Î ² -cell maturation. Islets, 2018, 10, e1472186.	0.9	5
25	Cumulative disadvantage. Acta Physiologica, 2018, 223, e13052.	1.8	Ο
26	Localization of microRNA-375 in perinatal rat pancreas. Non-coding RNAs in Endocrinology, 2018, 3, 1-4.	0.0	0
27	Non-Coding RNA in Pancreas and \hat{l}^2 -Cell Development. Non-coding RNA, 2018, 4, 41.	1.3	37
28	Isolation and Analysis of Mitochondrial Small RNAs from Rat Liver Tissue and HepG2 Cells. Methods in Molecular Biology, 2018, 1782, 337-350.	0.4	7
29	Neurotensin, substance P, and insulin enhance cell migration. Journal of Peptide Science, 2018, 24, e3093.	0.8	22
30	Expression of miR-206 in human islets and its role in glucokinase regulation. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E634-E637.	1.8	10
31	Effects of the Diabetes-Induced MicroRNA-155 on Wound Healing and Fibroblast Growth Factor 7 Expression. Diabetes, 2018, 67, 29-LB.	0.3	2
32	Analysis of â^¼700 Human Tissue Samples Identifies microRNAs That Are Associated with, Predictive of, and Necessary for Insulin Gene Transcription. Diabetes, 2018, 67, .	0.3	0
33	An â€~alpha-beta' of pancreatic islet microribonucleotides. International Journal of Biochemistry and Cell Biology, 2017, 88, 208-219.	1.2	21
34	Sirtuin 1 independent effects of resveratrol in INS-1E β-cells. Chemico-Biological Interactions, 2017, 264, 52-60.	1.7	7
35	Carriers of a <i>VEGFA</i> enhancer polymorphism selectively binding CHOP/DDIT3 are predisposed to increased circulating levels of thyroid-stimulating hormone. Journal of Medical Genetics, 2017, 54, 166-175.	1.5	12
36	Interplay of mitochondrial metabolism and microRNAs. Cellular and Molecular Life Sciences, 2017, 74, 631-646.	2.4	77

LOUISE DALGAARD

#	Article	IF	CITATIONS
37	Micro <scp>RNA</scp> s in metabolism. Acta Physiologica, 2017, 219, 346-361.	1.8	302
38	Functional Mitochondria Are Important for the Effect of Resveratrol. Molecules, 2017, 22, 847.	1.7	9
39	MicroRNA and Diabetes Mellitus. , 2016, , 263-276.		Ο
40	Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-RORÎ ³ Axis Regulating Proliferation in Î ² Cells. Cell Reports, 2016, 16, 2359-2372.	2.9	34
41	Circadian rhythms meet <i>in utero</i> metabolic programming. Acta Physiologica, 2016, 217, 182-183.	1.8	3
42	MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chemico-Biological Interactions, 2016, 259, 8-16.	1.7	51
43	MicroRNA Species in Follicular Fluid Associating With Polycystic Ovary Syndrome and Related Intermediary Phenotypes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1579-1589.	1.8	58
44	Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstetricia Et Gynecologica Scandinavica, 2014, 93, 1109-1122.	1.3	74
45	MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes, 2014, 5, 684-708.	1.0	124
46	Human Leukocyte Antigen-G and Regulatory T Cells during Specific Immunotherapy for Pollen Allergy. International Archives of Allergy and Immunology, 2013, 162, 237-252.	0.9	7
47	The frequent UCP2 â``866G>A polymorphism protects against insulin resistance and is associated with obesity: a study of obesity and related metabolic traits among 17 636 Danes. International Journal of Obesity, 2013, 37, 175-181.	1.6	36
48	Basal and T3-induced ROS Production in Lymphocyte Mitochondria is Increased in Type 2 Diabetic Patients. Hormone and Metabolic Research, 2013, 45, 261-266.	0.7	4
49	Syntaxin-1a is a Direct Target of miR-29a in Insulin-producing β-Cells. Hormone and Metabolic Research, 2013, 45, 463-466.	0.7	34
50	UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets. Biochemical and Biophysical Research Communications, 2012, 417, 495-500.	1.0	13
51	MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochemical and Biophysical Research Communications, 2012, 426, 266-272.	1.0	90
52	Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells. Biochemical and Biophysical Research Communications, 2011, 410, 345-350.	1.0	12
53	Genetic Variance in <i>Uncoupling Protein 2</i> in Relation to Obesity, Type 2 Diabetes, and Related Metabolic Traits: Focus on the Functional â^866G>A Promoter Variant (rs659366). Journal of Obesity, 2011, 2011, 1-12.	1.1	51
54	Expression and Localization of microRNAs in Perinatal Rat Pancreas: Role of miR-21 in Regulation of Cholesterol Metabolism. PLoS ONE, 2011, 6, e25997.	1.1	24

LOUISE DALGAARD

#	Article	IF	CITATIONS
55	The glycolipid sulfatide protects insulinâ€producing cells against cytokineâ€induced apoptosis, a possible role in diabetes. Diabetes/Metabolism Research and Reviews, 2010, 26, 631-638.	1.7	11
56	<i>LMNA</i> rs4641 and the Muscle Lamin A and C Isoforms in Twins—Metabolic Implications and Transcriptional Regulation. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3884-3892.	1.8	11
57	STAT5 activity in pancreatic Î ² -cells. Expert Review of Endocrinology and Metabolism, 2008, 3, 423-439.	1.2	6
58	Trefoil Factors Are Expressed in Human and Rat Endocrine Pancreas: Differential Regulation by Growth Hormone. Endocrinology, 2006, 147, 5752-5759.	1.4	30
59	Glucose-induced repression of PPARα gene expression in pancreatic β-cells involves PP2A activation and AMPK inactivation. Journal of Molecular Endocrinology, 2006, 36, 289-299.	1.1	82
60	Interactions between physical activity and variants of the genes encoding uncoupling proteins â^'2 and â''3 in relation to body weight changes during a 10-y follow-up. International Journal of Obesity, 2005, 29, 93-99.	1.6	40
61	Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure. Cell, 2005, 123, 493-505.	13.5	963
62	Mutational Analysis of the <i>UCP2</i> Core Promoter and Relationships of Variants with Obesity. Obesity, 2003, 11, 1420-1427.	4.0	47
63	Superoxide-mediated activation of uncoupling protein 2 causes pancreatic Î ² cell dysfunction. Journal of Clinical Investigation, 2003, 112, 1831-1842.	3.9	164
64	Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction. Journal of Clinical Investigation, 2003, 112, 1831-1842.	3.9	300
65	Observation. Diabetologia, 2001, 44, 1065-1067.	2.9	17
66	Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia, 2001, 44, 946-965.	2.9	202
67	The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. International Journal of Obesity, 2001, 25, 467-471.	1.6	101
68	A Prevalent Polymorphism in the Promoter of theUCP3Gene and Its Relationship to Body Mass Index and Long Term Body Weight Change in the Danish Population1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1398-1402.	1.8	34
69	A Prevalent Polymorphism in the Promoter of the UCP3Gene and Its Relationship to Body Mass Index and Long Term Body Weight Change in the Danish Population. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1398-1402.	1.8	33
70	A Novel Phe75fsdelT Mutation in the Hepatocyte Nuclear Factor-4α Gene in a Danish Pedigree with Maturity-Onset Diabetes of the Young1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 367-369.	1.8	19
71	Intermediate expansions of a GAA repeat in the frataxin gene are not associated with type 2 diabetes or altered glucose-induced beta-cell function in Danish Caucasians. Diabetes, 1999, 48, 914-917.	0.3	19
72	Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24â€h energy expenditure and substrate oxidation. International Journal of Obesity, 1999, 23, 1030-1034.	1.6	104

#	Article	IF	CITATIONS
73	An untranslated insertion variant in the uncoupling protein 2 gene is not related to body mass index and changes in body weight during a 26-year follow-up in Danish Caucasian men. Diabetologia, 1999, 42, 1413-1416.	2.9	39
74	A Novel Phe75fsdelT Mutation in the Hepatocyte Nuclear Factor-4Â Gene in a Danish Pedigree with Maturity-Onset Diabetes of the Young. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 367-369.	1.8	16
75	Organisation of the coding exons and mutational screening of the uncoupling protein 3 gene in subjects with juvenile-onset obesity. Diabetologia, 1998, 41, 241-244.	2.9	49
76	Mutations in the hepatocyte nuclear factor-1α gene in Caucasian families originally classified as having Type I diabetes. Diabetologia, 1998, 41, 1528-1531.	2.9	89
77	Studies of the genetic variability of the coding region of the hepatocyte nuclear factor-4α in Caucasians with maturity onset NIDDM. Diabetologia, 1997, 40, 980-983.	2.9	71
78	Mutational analysis of the coding region of the uncoupling protein 2 gene in obese NIDDM patients: Impact of a common amino acid polymorphism on juvenile and maturity onset forms of obesity and insulin resistance. Diabetologia, 1997, 40, 1227-1230.	2.9	76