Adela G De La Campa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118563/publications.pdf

Version: 2024-02-01

62 papers

1,943 citations

201674 27 h-index 276875 41 g-index

62 all docs

62 docs citations

62 times ranked 1832 citing authors

#	Article	IF	CITATIONS
1	Genome-wide proximity between RNA polymerase and DNA topoisomerase I supports transcription in Streptococcus pneumoniae. PLoS Genetics, 2021, 17, e1009542.	3.5	11
2	Seconeolitsine, the Novel Inhibitor of DNA Topoisomerase I, Protects against Invasive Pneumococcal Disease Caused by Fluoroquinolone-Resistant Strains. Antibiotics, 2021, 10, 573.	3.7	2
3	The TLR4-MyD88 Signaling Axis Regulates Lung Monocyte Differentiation Pathways in Response to Streptococcus pneumoniae. Frontiers in Immunology, 2020, 11, 2120.	4.8	14
4	Antibacterial activity of a DNA topoisomerase I inhibitor versus fluoroquinolones in Streptococcus pneumoniae. PLoS ONE, 2020, 15, e0241780.	2.5	6
5	An Uncharacterized Member of the Gls24 Protein Superfamily Is a Putative Sensor of Essential Amino Acid Availability in Streptococcus pneumoniae. Microbial Ecology, 2019, 77, 471-487.	2.8	3
6	Boldine-Derived Alkaloids Inhibit the Activity of DNA Topoisomerase I and Growth of Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 1659.	3 . 5	16
7	HU of Streptococcus pneumoniae Is Essential for the Preservation of DNA Supercoiling. Frontiers in Microbiology, 2018, 9, 493.	3 . 5	26
8	The Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling. Frontiers in Microbiology, 2017, 8, 1447.	3 . 5	23
9	Upregulation of the PatAB Transporter Confers Fluoroquinolone Resistance to Streptococcus pseudopneumoniae. Frontiers in Microbiology, 2017, 8, 2074.	3 . 5	10
10	Bridging Chromosomal Architecture and Pathophysiology of Streptococcus pneumoniae. Genome Biology and Evolution, 2017, 9, 350-361.	2.5	9
11	A Novel Typing Method for Streptococcus pneumoniae Using Selected Surface Proteins. Frontiers in Microbiology, 2016, 7, 420.	3.5	2
12	DiiA is a novel dimorphic cell wall protein of Streptococcus pneumoniae involved in invasive disease. Journal of Infection, 2016, 73, 71-81.	3.3	6
13	An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene. Nucleic Acids Research, 2016, 44, gkw602.	14.5	43
14	Reactive Oxygen Species Contribute to the Bactericidal Effects of the Fluoroquinolone Moxifloxacin in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2016, 60, 409-417.	3.2	28
15	Identification of <i>Haemophilus haemolyticus < /i> in clinical samples and characterization of their mechanisms of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 2016, 71, 80-84.</i>	3.0	7
16	Absence of tmRNA Has a Protective Effect against Fluoroquinolones in Streptococcus pneumoniae. Frontiers in Microbiology, 2016, 7, 2164.	3.5	16
17	Molecular Characterization of Fluoroquinolone Resistance in Nontypeable Haemophilus influenzae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2015, 59, 461-466.	3.2	41
18	Induction of Prophages by Fluoroquinolones in Streptococcus pneumoniae: Implications for Emergence of Resistance in Genetically-Related Clones. PLoS ONE, 2014, 9, e94358.	2.5	22

#	Article	IF	CITATIONS
19	Role of Global and Local Topology in the Regulation of Gene Expression in Streptococcus pneumoniae. PLoS ONE, 2014, 9, e101574.	2.5	25
20	The Fluoroquinolone Levofloxacin Triggers the Transcriptional Activation of Iron Transport Genes That Contribute to Cell Death in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2014, 58, 247-257.	3.2	39
21	Spread of <i>Streptococcus pneumoniae </i> Serotype 8-ST63 Multidrug-Resistant Recombinant Clone, Spain. Emerging Infectious Diseases, 2014, 20, 1848-1856.	4.3	37
22	Fluoroquinolone-Resistant Pneumococci: Dynamics of Serotypes and Clones in Spain in 2012 Compared with Those from 2002 and 2006. Antimicrobial Agents and Chemotherapy, 2014, 58, 2393-2399.	3.2	22
23	Inspecting the potential physiological and biomedical value of 44 conserved uncharacterised proteins of Streptococcus pneumoniae. BMC Genomics, 2014, 15, 652.	2.8	10
24	Characterization of Recombinant Fluoroquinolone-Resistant Pneumococcus-Like Isolates. Antimicrobial Agents and Chemotherapy, 2013, 57, 254-260.	3.2	6
25	Some Pneumococcal Serotypes Are More Frequently Associated with Relapses of Acute Exacerbations in COPD Patients. PLoS ONE, 2013, 8, e59027.	2.5	13
26	Epidemiological and molecular aspects of rifampicin-resistant Staphylococcus aureus isolated from wounds, blood and respiratory samples. Journal of Antimicrobial Chemotherapy, 2011, 66, 997-1000.	3.0	26
27	New Species Genetic Approach To Identify Strains of Mitis Group Streptococci That Are Donors of Rifampin Resistance to <i>Streptococcus pneumoniae</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 368-372.	3.2	3
28	Nonoptimal DNA Topoisomerases Allow Maintenance of Supercoiling Levels and Improve Fitness of <i>Streptococcus pneumoniae</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1097-1105.	3.2	14
29	Trends of invasive serotype 6C pneumococci in Spain: emergence of a new lineage. Journal of Antimicrobial Chemotherapy, 2011, 66, 1712-1718.	3.0	29
30	New Alkaloid Antibiotics That Target the DNA Topoisomerase I of Streptococcus pneumoniae. Journal of Biological Chemistry, 2011, 286, 6402-6413.	3.4	51
31	Fluoroquinolone Efflux in Streptococcus suis Is Mediated by SatAB and Not by SmrA. Antimicrobial Agents and Chemotherapy, 2011, 55, 5850-5860.	3.2	28
32	Evidence of Localized Prophage-Host Recombination in the <i>lytA</i> Gene, Encoding the Major Pneumococcal Autolysin. Journal of Bacteriology, 2010, 192, 2624-2632.	2.2	9
33	The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters. Nucleic Acids Research, 2010, 38, 3570-3581.	14.5	58
34	The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates. PLoS ONE, 2010, 5, e11289.	2.5	31
35	Changes in Fluoroquinolone-ResistantStreptococcus pneumoniaafter 7-Valent Conjugate Vaccination, Spain. Emerging Infectious Diseases, 2009, 15, 905-911.	4.3	52
36	Fitness of <i>Streptococcus pneumoniae</i> Fluoroquinolone-Resistant Strains with Topoisomerase IV Recombinant Genes. Antimicrobial Agents and Chemotherapy, 2008, 52, 822-830.	3.2	45

#	Article	IF	Citations
37	First Characterization of Fluoroquinolone Resistance in Streptococcus suis. Antimicrobial Agents and Chemotherapy, 2007, 51, 777-782.	3.2	34
38	Molecular Characterization of Disease-Associated Streptococci of the Mitis Group That Are Optochin Susceptible. Journal of Clinical Microbiology, 2006, 44, 4163-4171.	3.9	25
39	Transcriptional analysis of the acid tolerance response in Streptococcus pneumoniae. Microbiology (United Kingdom), 2005, 151, 3935-3946.	1.8	54
40	New Mutations and Horizontal Transfer of rpoB among Rifampin-Resistant Streptococcus pneumoniae from Four Spanish Hospitals. Antimicrobial Agents and Chemotherapy, 2005, 49, 2237-2245.	3.2	27
41	Fluoroquinolone Resistance in Penicillin-resistant <i>Streptococcus pneumoniae</i> Clones, Spain. Emerging Infectious Diseases, 2004, 10, 1751-1759.	4.3	66
42	Relationship between codon biased genes, microarray expression values and physiological characteristics of Streptococcus pneumoniae. Microbiology (United Kingdom), 2004, 150, 2313-2325.	1.8	30
43	Genetic Characterization of Fluoroquinolone-Resistant Streptococcus pneumoniae Strains Isolated during Ciprofloxacin Therapy from a Patient with Bronchiectasis. Antimicrobial Agents and Chemotherapy, 2003, 47, 1419-1422.	3.2	21
44	Viridans Group Streptococci Are Donors in Horizontal Transfer of Topoisomerase IV Genes to Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2003, 47, 2072-2081.	3.2	98
45	Genetic Characterization of Optochin-Susceptible Viridans Group Streptococci. Antimicrobial Agents and Chemotherapy, 2003, 47, 3187-3194.	3.2	31
46	High-Efficiency Generation of Antibiotic-Resistant Strains of Streptococcus pneumoniae by PCR and Transformation. Antimicrobial Agents and Chemotherapy, 2003, 47, 1257-1261.	3.2	26
47	Levofloxacin Treatment Failure in <i>Haemophilus influenzae</i> Pneumonia. Emerging Infectious Diseases, 2003, 9, 1475-1479.	4.3	34
48	Mefloquine and New Related Compounds Target the F 0 Complex of the F 0 F $1\mathrm{H}$ + -ATPase of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2002, 46, 1680-1687.	3.2	50
49	The membrane-associated F0F1ATPase is essential for the viability of Streptococcus pneumoniae. FEMS Microbiology Letters, 2002, 212, 133-138.	1.8	26
50	The promoter of the operon encoding the FOF1 ATPase of Streptococcus pneumoniae is inducible by pH. Molecular Microbiology, 2001, 41, 1327-1338.	2.5	51
51	Horizontal Transfer of parC and gyrA in Fluoroquinolone-Resistant Clinical Isolates of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2000, 44, 840-847.	3.2	87
52	Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Molecular Microbiology, 2000, 35, 1089-1098.	2.5	40
53	Fluoroquinolones Inhibit PreferentiallyStreptococcus pneumoniaeDNA Topoisomerase IV Than DNA Gyrase Native Proteins. Microbial Drug Resistance, 2000, 6, 259-267.	2.0	28
54	Drug Efflux and parC Mutations Are Involved in Fluoroquinolone Resistance in Viridans Group Streptococci. Antimicrobial Agents and Chemotherapy, 1999, 43, 2520-2523.	3.2	29

#	Article	IF	CITATIONS
55	Fluoroquinolone Resistance Mutations in the DNA Topoisomerase II Genes of Viridans Group Streptococci Clinical Isolates. Drugs, 1999, 58, 125-127.	10.9	0
56	Fluoroquinolone Resistance Mutations in the <i>parC</i> , <i>parE</i> , and <i>gyrA</i> Genes of Clinical Isolates of Viridans Group Streptococci. Antimicrobial Agents and Chemotherapy, 1998, 42, 2792-2798.	3.2	94
57	Molecular Characterization of the Gene Encoding the DNA Gyrase A Subunit of Streptococcus pneumoniae. Journal of Bacteriology, 1998, 180, 2854-2861.	2.2	48
58	Molecular Bases of Three Characteristic Phenotypes of Pneumococcus: Optochin-Sensitivity, Coumarin-Sensitivity, and Quinolone-Resistance. Microbial Drug Resistance, 1997, 3, 177-193.	2.0	15
59	Molecular basis of the optochin-sensitive phenotype of pneumococcus: characterization of the genes encoding the FOcomplex of the Streptococcus pneumoniae Streptococcus oralis H+-ATPases. Molecular Microbiology, 1994, 12, 587-598.	2.5	71
60	Initiation of replication of plasmid pLS1. Journal of Molecular Biology, 1990, 213, 247-262.	4.2	66
61	Three regions in the DNA of plasmid pLS1 show sequence-directed static bending. Nucleic Acids Research, 1988, 16, 9113-9126.	14.5	28
62	Proteins encoded by the DpnII restriction gene cassette. Journal of Molecular Biology, 1987, 196, 457-469.	4.2	81