Jennifer G Deluca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118532/publications.pdf

Version: 2024-02-01

101543 5,152 60 36 citations h-index papers

g-index 68 68 68 4724 docs citations times ranked citing authors all docs

133252

59

#	Article	IF	CITATIONS
1	Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts. Molecular Biology of the Cell, 2021, 32, 1241-1255.	2.1	4
2	Generation and diversification of recombinant monoclonal antibodies. ELife, 2021, 10, .	6.0	7
3	BuGZ facilitates loading of spindle assembly checkpoint proteins to kinetochores in early mitosis. Journal of Biological Chemistry, 2020, 295, 14666-14677.	3.4	6
4	Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Molecular Biology of the Cell, 2020, 31, 2363-2378.	2.1	11
5	Hec1/Ndc80 Tail Domain Function at the Kinetochore-Microtubule Interface. Frontiers in Cell and Developmental Biology, 2020, 8, 43.	3.7	33
6	The Hec1/Ndc80 tail domain is required for force generation at kinetochores, but is dispensable for kinetochore–microtubule attachment formation and Ska complex recruitment. Molecular Biology of the Cell, 2020, 31, 1453-1473.	2.1	13
7	The right place at the right time: Aurora B kinase localization to centromeres and kinetochores. Essays in Biochemistry, 2020, 64, 299-311.	4.7	32
8	Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. Journal of Cell Biology, 2020, 219, .	5.2	85
9	Effectors of the spindle assembly checkpoint are confined within the nucleus of Saccharomyces cerevisiae. Biology Open, 2019, 8, .	1.2	O
10	Aurora A kinase phosphorylates Hec1 to regulate metaphase kinetochore–microtubule dynamics. Journal of Cell Biology, 2018, 217, 163-177.	5.2	81
11	Cofilin Regulates Nuclear Architecture through a Myosin-II Dependent Mechanotransduction Module. Scientific Reports, 2017, 7, 40953.	3.3	44
12	Spindle assembly checkpoint signaling and sister chromatid cohesion are disrupted by HPV E6-mediated transformation. Molecular Biology of the Cell, 2017, 28, 2035-2041.	2.1	12
13	"Wait anaphase―signals are not confined to the mitotic spindle. Molecular Biology of the Cell, 2017, 28, 1186-1194.	2.1	9
14	Sensitivity to <i>BUB1B</i> Inhibition Defines an Alternative Classification of Glioblastoma. Cancer Research, 2017, 77, 5518-5529.	0.9	38
15	Use of Confocal Microscopy to Evaluate Equine Zygote Development After Sperm Injection of Oocytes Matured In Vivo or In Vitro. Microscopy and Microanalysis, 2017, 23, 1197-1206.	0.4	3
16	Aurora A Kinase Function at Kinetochores. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 91-99.	1.1	10
17	Nucleosomal arrays selfâ€assemble into supramolecular globular structures lacking 30â€nm fibers. EMBO Journal, 2016, 35, 1115-1132.	7.8	164
18	Superresolved multiphoton microscopy with spatial frequency-modulated imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6605-6610.	7.1	62

#	Article	IF	Citations
19	Measuring Kinetochore–Microtubule Attachment Stability in Cultured Cells. Methods in Molecular Biology, 2016, 1413, 147-168.	0.9	8
20	Real-time quantification of single RNA translation dynamics in living cells. Science, 2016, 352, 1425-1429.	12.6	317
21	HP1-Assisted Aurora B Kinase Activity Prevents Chromosome Segregation Errors. Developmental Cell, 2016, 36, 487-497.	7.0	61
22	The RZZ complex requires the N-terminus of KNL1 to mediate optimal Mad1 kinetochore localization in human cells. Open Biology, 2015, 5, 150160.	3.6	54
23	Stable kinetochore–microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells. Nature Communications, 2015, 6, 10036.	12.8	91
24	Proteomic Characterization of the Nucleolar Linker Histone H1 Interaction Network. Journal of Molecular Biology, 2015, 427, 2056-2071.	4.2	42
25	Cytoskeletal alterations associated with donor age and culture interval for equine oocytes and potential zygotes that failed to cleave after intracytoplasmic sperm injection. Reproduction, Fertility and Development, 2015, 27, 944.	0.4	16
26	Molecular Pathways: Regulation and Targeting of Kinetochore–Microtubule Attachment in Cancer. Clinical Cancer Research, 2015, 21, 233-239.	7.0	23
27	Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity. Molecular Biology of the Cell, 2015, 26, 1829-1844.	2.1	97
28	BuGZ Is Required for Bub3 Stability, Bub1 Kinetochore Function, and Chromosome Alignment. Developmental Cell, 2014, 28, 282-294.	7.0	64
29	The Architecture of CCAN Proteins Creates a Structural Integrity to Resist Spindle Forces and Achieve Proper Intrakinetochore Stretch. Developmental Cell, 2014, 30, 717-730.	7.0	73
30	KNL1: bringing order to the kinetochore. Chromosoma, 2014, 123, 169-181.	2.2	50
31	Accurate phosphoregulation of kinetochore–microtubule affinity requires unconstrained molecular interactions. Journal of Cell Biology, 2014, 206, 45-59.	5. 2	97
32	Mad2 "Opens―Cdc20 for BubR1 Binding. Molecular Cell, 2013, 51, 3-4.	9.7	4
33	KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity. Journal of Cell Biology, 2013, 203, 957-969.	5.2	69
34	Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells. Cancer Discovery, 2013, 3, 198-211.	9.4	78
35	Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus. Nucleic Acids Research, 2013, 41, 4026-4035.	14.5	73
36	ADF/Cofilin Regulates Actomyosin Assembly through Competitive Inhibition of Myosin II Binding to F-Actin. Developmental Cell, 2012, 22, 530-543.	7.0	94

#	Article	IF	CITATIONS
37	Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE). Optics Express, 2012, 20, 26681.	3.4	62
38	Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore–microtubule attachment. Nature Cell Biology, 2012, 14, 593-603.	10.3	88
39	Structural organization of the kinetochore–microtubule interface. Current Opinion in Cell Biology, 2012, 24, 48-56.	5.4	104
40	FORMIN Stable Kinetochore-Microtubule Attachments. Developmental Cell, 2011, 20, 283-284.	7.0	1
41	The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore–microtubule attachment in mitosis. Molecular Biology of the Cell, 2011, 22, 759-768.	2.1	101
42	Temporal changes in Hec1 phosphorylation control kinetochoreâ€"microtubule attachment stability during mitosis. Journal of Cell Science, 2011, 124, 622-634.	2.0	223
43	Kinetochore–Microtubule Dynamics and Attachment Stability. Methods in Cell Biology, 2010, 97, 53-79.	1.1	19
44	Kinetochores: NDC80 Toes the Line. Current Biology, 2010, 20, R1083-R1085.	3.9	2
45	Sds22 regulates aurora B activity and microtubule–kinetochore interactions at mitosis. Journal of Cell Biology, 2010, 191, 61-74.	5.2	110
46	Chromosome Segregation: Ndc80 Can Carry the Load. Current Biology, 2009, 19, R404-R407.	3.9	16
47	Connecting with Ska, a key complex at the kinetochore–microtubule interface. EMBO Journal, 2009, 28, 1375-1377.	7.8	35
48	Protein Architecture of the Human Kinetochore Microtubule Attachment Site. Cell, 2009, 137, 672-684.	28.9	310
49	Polarization sensitive, three-dimensional, single-molecule imaging of cells with a †double-helix system. Optics Express, 2009, 17, 19644.	3.4	51
50	Kinetochore-Microtubule Attachment Relies on the Disordered N-Terminal Tail Domain of Hec1. Current Biology, 2008, 18, 1778-1784.	3.9	200
51	\hat{l}^2 -Catenin is a Nek2 substrate involved in centrosome separation. Genes and Development, 2008, 22, 91-105.	5.9	196
52	Spindle Microtubules: Getting Attached at Both Ends. Current Biology, 2007, 17, R966-R969.	3.9	4
53	Kinetochore Microtubule Dynamics and Attachment Stability Are Regulated by Hec1. Cell, 2006, 127, 969-982.	28.9	663
54	Hec1 and Nuf2 Are Core Components of the Kinetochore Outer Plate Essential for Organizing Microtubule Attachment Sites. Molecular Biology of the Cell, 2005, 16, 519-531.	2.1	224

JENNIFER G DELUCA

#	Article	IF	CITATION
55	Kinetochores: If You Build It, They Will Come. Current Biology, 2004, 14, R921-R923.	3.9	6
56	The dynamic kinetochore-microtubule interface. Journal of Cell Science, 2004, 117, 5461-5477.	2.0	346
57	Nuf2 and Hec1 Are Required for Retention of the Checkpoint Proteins Mad1 and Mad2 to Kinetochores. Current Biology, 2003, 13, 2103-2109.	3.9	135
58	hNuf2 inhibition blocks stable kinetochore–microtubule attachment and induces mitotic cell death in HeLa cells. Journal of Cell Biology, 2002, 159, 549-555.	5.2	241
59	Intrinsically Slow Dynamic Instability of HeLa Cell Microtubules in Vitro. Journal of Biological Chemistry, 2002, 277, 42456-42462.	3.4	43
60	Purification and Characterization of Native Conventional Kinesin, HSET, and CENP-E from Mitotic HeLa Cells. Journal of Biological Chemistry, 2001, 276, 28014-28021.	3.4	46