João Tomé-Carneiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118414/publications.pdf

Version: 2024-02-01

34 papers

2,477 citations

304602 22 h-index 33 g-index

34 all docs

34 docs citations

times ranked

34

4187 citing authors

#	Article	IF	CITATIONS
1	Bovine Milk-Derived Exosomes as a Drug Delivery Vehicle for miRNA-Based Therapy. International Journal of Molecular Sciences, 2021, 22, 1105.	1.8	89
2	Mediterranean diet enriched in extra-virgin olive oil or nuts modulates circulating exosomal non-coding RNAs. European Journal of Nutrition, 2021, 60, 4279-4293.	1.8	21
3	Connection between miRNA Mediation and the Bioactive Effects of Broccoli (<i>Brassica oleracea</i>) Tj ETQq1 Agricultural and Food Chemistry, 2021, 69, 9326-9337.	1 0.78431 2.4	14 rgBT /Ov <mark>erl</mark> 17
4	Trimethylamine n-Oxide (TMAO) Modulates the Expression of Cardiovascular Disease-Related microRNAs and Their Targets. International Journal of Molecular Sciences, 2021, 22, 11145.	1.8	16
5	Up–to–date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?. RNA Biology, 2021, , 1-14.	1.5	3
6	An overview of the pharmacology of olive oil and its active ingredients. British Journal of Pharmacology, 2020, 177, 1316-1330.	2.7	64
7	Intestinal miRNAs regulated in response to dietary lipids. Scientific Reports, 2020, 10, 18921.	1.6	11
8	Intestinal Lipid Metabolism Genes Regulated by miRNAs. Frontiers in Genetics, 2020, 11, 707.	1.1	12
9	Concentrates of buttermilk and krill oil improve cognition in aged rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 155, 102077.	1.0	12
10	Olive oil consumption and its repercussions on lipid metabolism. Nutrition Reviews, 2020, 78, 952-968.	2.6	24
11	Wine's Phenolic Compounds and Health: A Pythagorean View. Molecules, 2020, 25, 4105.	1.7	28
12	Identification and validation of common molecular targets of hydroxytyrosol. Food and Function, 2019, 10, 4897-4910.	2.1	14
13	Postprandial Circulating miRNAs in Response to a Dietary Fat Challenge. Nutrients, 2019, 11, 1326.	1.7	29
14	Response to: Letter to the editor "Some thoughts about the possibility of diet-derived exogenous small RNAs― Pharmacological Research, 2019, 141, 622.	3.1	0
15	Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil. Scientific Reports, 2018, 8, 3993.	1.6	19
16	Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacological Research, 2018, 132, 21-32.	3.1	54
17	Buttermilk and Krill Oil Phospholipids Improve Hippocampal Insulin Resistance and Synaptic Signaling in Aged Rats. Molecular Neurobiology, 2018, 55, 7285-7296.	1.9	34
18	Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods, 2018, 7, 90.	1.9	57

#	Article	IF	CITATIONS
19	Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer's disease. BioFactors, 2017, 43, 540-548.	2.6	43
20	Proteomic evaluation of mouse adipose tissue and liver following hydroxytyrosol supplementation. Food and Chemical Toxicology, 2017, 107, 329-338.	1.8	14
21	Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and keyâ€associated molecular hallmarks: MicroRNA cell specific induction of ⟨i⟩CDKN1A⟨ i⟩ (p21) as a common mechanism involved. Molecular Nutrition and Food Research, 2016, 60, 701-716.	1.5	68
22	Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans. Journal of Nutritional Biochemistry, 2016, 34, 146-155.	1.9	42
23	Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. Phytomedicine, 2016, 23, 1145-1174.	2.3	104
24	Soy Isoflavones in Nutritionally Relevant Amounts Have Varied Nutrigenomic Effects on Adipose Tissue. Molecules, 2015, 20, 2310-2322.	1.7	14
25	One-week administration of hydroxytyrosol to humans does not activate Phase II enzymes. Pharmacological Research, 2015, 95-96, 132-137.	3.1	54
26	The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food and Function, 2015, 6, 1460-1469.	2.1	94
27	Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. Journal of Functional Foods, 2015, 19, 225-235.	1.6	127
28	Resveratrol in primary and secondary prevention of cardiovascular disease: a dietary and clinical perspective. Annals of the New York Academy of Sciences, 2013, 1290, 37-51.	1.8	80
29	Grape Resveratrol Increases Serum Adiponectin and Downregulates Inflammatory Genes in Peripheral Blood Mononuclear Cells: A Triple-Blind, Placebo-Controlled, One-Year Clinical Trial in Patients with Stable Coronary Artery Disease. Cardiovascular Drugs and Therapy, 2013, 27, 37-48.	1.3	197
30	One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacological Research, 2013, 72, 69-82.	3.1	304
31	Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence. Current Pharmaceutical Design, 2013, 19, 6064-6093.	0.9	377
32	One-Year Consumption of a Grape Nutraceutical Containing Resveratrol Improves the Inflammatory and Fibrinolytic Status of Patients in Primary Prevention of Cardiovascular Disease. American Journal of Cardiology, 2012, 110, 356-363.	0.7	219
33	Consumption of a grape extract supplement containing resveratrol decreases oxidized <scp>LDL</scp> and <scp>A</scp> po <scp>B</scp> in patients undergoing primary prevention of cardiovascular disease: A tripleâ€blind, 6â€month followâ€up, placeboâ€controlled, randomized trial. Molecular Nutrition and Food Research, 2012, 56, 810-821.	1.5	167
34	Preventive Oral Treatment with Resveratrol Pro-prodrugs Drastically Reduce Colon Inflammation in Rodents. Journal of Medicinal Chemistry, 2010, 53, 7365-7376.	2.9	69