
Weibo Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4118293/publications.pdf Version: 2024-02-01

WEIRO KONC

#	Article	IF	CITATIONS
1	Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Advances, 2017, 7, 26858-26866.	3.6	89
2	Thermally reliable, recyclable and malleable solid–solid phase-change materials through the classical Diels–Alder reaction for sustainable thermal energy storage. Journal of Materials Chemistry A, 2019, 7, 21802-21811.	10.3	88
3	Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Advances, 2015, 5, 68881-68889.	3.6	78
4	A facile synthesis of solid-solid phase change material for thermal energy storage. Applied Thermal Engineering, 2017, 117, 622-628.	6.0	61
5	Mechanically robust, exceptionally recyclable and shape memory cross-linked network based on reversible dynamic urea bonds. Journal of Materials Chemistry A, 2020, 8, 22369-22378.	10.3	52
6	Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage. Energy and Buildings, 2018, 158, 37-42.	6.7	45
7	Preparation and characterizations of asphalt/lauric acid blends phase change materials for potential building materials. Construction and Building Materials, 2017, 152, 568-575.	7.2	39
8	Processable and recyclable crosslinking solid-solid phase change materials based on dynamic disulfide covalent adaptable networks for thermal energy storage. Energy, 2021, 232, 121070.	8.8	36
9	Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Advances, 2017, 7, 29554-29562.	3.6	29
10	Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1011-1019.	3.6	28
11	An ultra-low hysteresis, self-healing and stretchable conductor based on dynamic disulfide covalent adaptable networks. Journal of Materials Chemistry A, 2022, 10, 2012-2020.	10.3	28
12	Novel thermosetting phase change materials with polycarbonatediol based curing agent as supporting skeleton for thermal energy storage. Energy and Buildings, 2017, 146, 12-18.	6.7	27
13	Two phosphorous-containing flame retardant form a novel intumescent flame-retardant system with polycarbonate. Polymer Degradation and Stability, 2016, 134, 136-143.	5.8	26
14	Reprocessable, biodegradable polyester-based solid-solid phase change materials networks from dynamic ionic crosslinking with high latent heat capability. Journal of Cleaner Production, 2021, 297, 126630.	9.3	26
15	Super tough and stable solid–solid phase change material based on π-π stacking. Chemical Engineering Journal, 2022, 429, 132447.	12.7	24
16	Molecular design for silaneâ€ŧerminated polyurethane applied to moisture urable pressureâ€sensitive adhesive. Journal of Applied Polymer Science, 2017, 134, 45292.	2.6	19
17	Effect of phase separation on water resistance of green waterborne polyurethanes: Unexpected stronger impact compared to hydrophilic segments. Advances in Polymer Technology, 2018, 37, 1618-1624.	1.7	19
18	Preparation and Characterization of Thermoplastic Elastomer Based on Amino-terminated Polyamide-6 and Diisocyanate-terminated Polytetramethylene Glycol. Polymer-Plastics Technology and Engineering, 2016, 55, 1-8.	1.9	18

Weibo Kong

#	Article	IF	CITATIONS
19	Structure–property relations of nylonâ€6 and polytetramethylene glycol based multiblock copolymers with microphase separation prepared through reactive processing. Polymer International, 2017, 66, 436-442.	3.1	18
20	Preparation and characterization of a water resistance flame retardant and its enhancement on charring–forming for polycarbonate. Journal of Thermal Analysis and Calorimetry, 2017, 129, 809-820.	3.6	17
21	Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2017, 128, 643-651.	3.6	16
22	A polyethylene glycol-based form-stable phase change material supported by nanoarray-modified metal foam. Journal of Energy Storage, 2022, 47, 103592.	8.1	16
23	Synthesis of tris(phenoxy)trifluorocyclotriphosphazenes and study of its effects on the flammable, thermal, optical, and mechanical properties of bisphenol-A polycarbonate. Journal of Thermal Analysis and Calorimetry, 2015, 122, 805-816.	3.6	15
24	Preparation, characterization and properties of poly(lactic acid)/poly(1,4-butylene adipate) blends for biodegradable packaging materials. Macromolecular Research, 2017, 25, 439-445.	2.4	15
25	Preparation and investigation of solid polymer electrolyte based on novel polyamide elastomer/metal salt. Macromolecular Research, 2017, 25, 864-870.	2.4	14
26	Reliable and recyclable dynamically combinatorial epoxy networks for thermal energy storage. Solar Energy, 2021, 230, 825-831.	6.1	13
27	Prepatation and characterization of poly(ether-block-amide)/metal-salt antistatic composites. Soft Materials, 2016, 14, 46-56.	1.7	12
28	Facile preparation of reversible thermochromic phase change materials towards temperature-controlled information storage and self-reporting. Journal of Energy Storage, 2022, 50, 104292.	8.1	10
29	A novel intrinsic semi-aromatic polyamide dielectric toward excellent thermal stability, mechanical robustness and dielectric performance. Polymer, 2021, 234, 124233.	3.8	9
30	The synergistic effects of a novel intumescent flame-retardant poly-(4-nitrophenoxy)-phosphazene and ammonium polyphosphate on ABS systems. Journal of Thermal Analysis and Calorimetry, 2019, 137, 65-77.	3.6	8
31	Thermal-Conductive, Dynamic Cross-Linked Solid–Solid Phase Change Composites toward Sustainable Energy Utilization. Industrial & Engineering Chemistry Research, 2022, 61, 6448-6457.	3.7	8
32	Structure-property relations of novel polyamide-6 elastomers prepared through reactive processing. Journal of Polymer Research, 2017, 24, 1.	2.4	7
33	Structure-properties relationships of novel poly(carbonate-co-amide) segmented copolymers with polyamide-6 as hard segments and polycarbonate as soft segments. Journal of Molecular Structure, 2018, 1157, 52-60.	3.6	7
34	Nonconstant enthalpy of thermosetting solid-solid phase change materials controlled by light. Energy and Buildings, 2020, 214, 109894.	6.7	7
35	Synthesis and characterization of combâ€like crosslinking polyurethane based formâ€stable phaseâ€change materials for thermal energy storage. Polymers for Advanced Technologies, 2021, 32, 4162-4170.	3.2	7
36	Reactive processing of thermoplastic elastomers based on polyamide-6: preparation and characterization. Iranian Polymer Journal (English Edition), 2016, 25, 765-773.	2.4	6

Weibo Kong

#	Article	IF	CITATIONS
37	Synthesis and characterization of poly(styrene-block-n-butyl acrylate) pentablock copolymer via RAFT emulsion polymerization mediated by amphiphilic macroRAFT agent combined with pre-emulsion technology. Polymer Bulletin, 2016, 73, 1649-1671.	3.3	6
38	Synergistic effect of phosphorusâ€containing silane coupling agent with alumina trihydrate in ethyleneâ€vinyl acetate composites. Advances in Polymer Technology, 2018, 37, 1456-1468.	1.7	5
39	Preparation and properties of environment-friendly acrylic latex laminating adhesives applied in plastic/plastic composite films. Journal of Adhesion Science and Technology, 2019, 33, 2-17.	2.6	5
40	Resistivity optimization and properties of silver nanoparticles-filled alcohol-soluble conductive coating based on acrylic resin. High Performance Polymers, 2015, 27, 930-938.	1.8	4
41	Preparation and characterization of a new class of poly(etherâ€blockâ€amide)s via solvent free reactive processing. Polymers for Advanced Technologies, 2018, 29, 490-496.	3.2	4
42	A high dielectric constant copolyamide based on high dipole density. Journal of Polymer Research, 2022, 29, 1.	2.4	3
43	Facile Preparation of Calcium Stearoyl Lactylate as Solid–Liquid Phase Change Materials with Improved Form Stability and Adjustable Phase Transition Temperature for Thermal Comfort. Environmental Progress and Sustainable Energy, 2019, 38, 13136.	2.3	2
44	Enhancement of charâ€forming and water resistance on ABS modified by poly(4â€nitrophenoxy)â€phosphazene. Journal of Applied Polymer Science, 2018, 135, 45988.	2.6	1
45	A highly stable covalent adaptable network through Ï∈-Ï€ conjugated confinement effect. Polymer, 2022, 252, 124923.	3.8	1