
Adele L Marston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4117925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eco1-dependent cohesin acetylation anchors chromatin loops and cohesion to define functional meiotic chromosome domains. ELife, 2022, 11, .	6.0	14
2	The Proteomic Landscape of Centromeric Chromatin Reveals an Essential Role for the Ctf19CCAN Complex in Meiotic Kinetochore Assembly. Current Biology, 2021, 31, 283-296.e7.	3.9	14
3	SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. Journal of Cell Biology, 2021, 220, .	5.2	5
4	Angelika Amon (1967–2020): Breakthrough scientist, extraordinary mentor, and loyal friend. Journal of Cell Biology, 2021, 220, .	5.2	0
5	A SUMOylation wave to anchor the genome. Journal of Cell Biology, 2021, 220, .	5.2	1
6	Meiosis I Kinase Regulators: Conserved Orchestrators of Reductional Chromosome Segregation. BioEssays, 2020, 42, e2000018.	2.5	7
7	A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination. Genetics, 2020, 216, 395-408.	2.9	8
8	Evolutionary repair: Changes in multiple functional modules allow meiotic cohesin to support mitosis. PLoS Biology, 2020, 18, e3000635.	5.6	15
9	Convergent genes shape budding yeast pericentromeres. Nature, 2020, 582, 119-123.	27.8	50
10	Title is missing!. , 2020, 18, e3000635.		0
11	Title is missing!. , 2020, 18, e3000635.		Ο
12	Title is missing!. , 2020, 18, e3000635.		0
13	Title is missing!. , 2020, 18, e3000635.		Ο
14	The molecular basis of monopolin recruitment to the kinetochore. Chromosoma, 2019, 128, 331-354.	2.2	17
15	Analysis of the Chromosomal Localization of Yeast SMC Complexes by Chromatin Immunoprecipitation. Methods in Molecular Biology, 2019, 2004, 119-138.	0.9	6
16	Reductional Meiosis I Chromosome Segregation Is Established by Coordination of Key Meiotic Kinases. Developmental Cell, 2019, 49, 526-541.e5.	7.0	29
17	Spo13 prevents premature cohesin cleavage during meiosis. Wellcome Open Research, 2019, 4, 29.	1.8	9
18	Spo13 prevents premature cohesin cleavage during meiosis. Wellcome Open Research, 2019, 4, 29.	1.8	14

2

Adele L Marston

#	Article	IF	CITATIONS
19	Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen. Genetics, 2018, 208, 589-603.	2.9	23
20	Cohesin and chromosome segregation. Current Biology, 2018, 28, R688-R693.	3.9	41
21	Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355, .	12.6	163
22	The Kinetochore Receptor for the Cohesin Loading Complex. Cell, 2017, 171, 72-84.e13.	28.9	88
23	A Functional Link Between Bir1 and the <i>Saccharomyces cerevisiae</i> Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3: Genes, Genomes, Genetics, 2017, 7, 3203-3215.	1.8	5
24	Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast. Wellcome Open Research, 2017, 2, 2.	1.8	20
25	Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis. Frontiers in Cell and Developmental Biology, 2017, 5, 109.	3.7	59
26	Dalmatian: spotting the difference in cohesin protectors. EMBO Journal, 2017, 36, 1468-1470.	7.8	1
27	From equator to pole: splitting chromosomes in mitosis and meiosis. Genes and Development, 2015, 29, 109-122.	5.9	82
28	Shugoshins: Tension-Sensitive Pericentromeric Adaptors Safeguarding Chromosome Segregation. Molecular and Cellular Biology, 2015, 35, 634-648.	2.3	82
29	Structural evidence for Scc4-dependent localization of cohesin loading. ELife, 2015, 4, e06057.	6.0	69
30	The kinetochore prevents centromere-proximal crossover recombination during meiosis. ELife, 2015, 4, .	6.0	108
31	Chromosome Segregation in Budding Yeast: Sister Chromatid Cohesion and Related Mechanisms. Genetics, 2014, 196, 31-63.	2.9	84
32	Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes and Development, 2014, 28, 1291-1309.	5.9	65
33	Sister kinetochores are mechanically fused during meiosis I in yeast. Science, 2014, 346, 248-251.	12.6	68
34	Direct Evidence for Sister Kinetochore Fusion in Meiosis I. Biophysical Journal, 2014, 106, 637a.	0.5	0
35	Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere. ELife, 2014, 3, e01374.	6.0	74
36	Cohesin-Dependent Association of Scc2/4 with the Centromere Initiates Pericentromeric Cohesion Establishment. Current Biology, 2013, 23, 599-606.	3.9	92

Adele L Marston

#	Article	IF	CITATIONS
37	A JARID Family Demethylase Controls Differentiation Timing through Global Effects on Transcription. Molecular Cell, 2012, 48, 489-490.	9.7	2
38	Cdc55 coordinates spindle assembly and chromosome disjunction during meiosis. Journal of Cell Biology, 2011, 193, 1213-1228.	5.2	28
39	The Role of Shugoshin in Meiotic Chromosome Segregation. Cytogenetic and Genome Research, 2011, 133, 234-242.	1.1	49
40	Shugoshin prevents cohesin cleavage by PP2A ^{Cdc55} -dependent inhibition of separase. Genes and Development, 2009, 23, 766-780.	5.9	59
41	Establishment of Cohesion at the Pericentromere by the Ctf19 Kinetochore Subcomplex and the Replication Fork-Associated Factor, Csm3. PLoS Genetics, 2009, 5, e1000629.	3.5	87
42	Meiosis: DDK Is Not Just for Replication. Current Biology, 2009, 19, R74-R76.	3.9	25
43	Roles of Centromeres and Kinetochores in Meiosis. , 2009, , 1-37.		0
44	Shugoshin Promotes Sister Kinetochore Biorientation in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2008, 19, 1199-1209.	2.1	43
45	From a to α. Yeast as a Model for Cellular Differentiation. H. Madhani. Cold Spring Harbor Laboratory Press. 2007. 108 pages. ISBN-13 978-087969738-9. ISBN-10 087969738-5. Price \$39. (paperback). Genetical Research, 2007, 89, 61-61.	0.9	0
46	The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes and Development, 2005, 19, 3017-3030.	5.9	87
47	A Genome-Wide Screen Identifies Genes Required for Centromeric Cohesion. Science, 2004, 303, 1367-1370.	12.6	252
48	Meiosis: cell-cycle controls shuffle and deal. Nature Reviews Molecular Cell Biology, 2004, 5, 983-997.	37.0	293
49	The Cdc14 Phosphatase and the FEAR Network Control Meiotic Spindle Disassembly and Chromosome Segregation. Developmental Cell, 2003, 4, 711-726.	7.0	118
50	A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast. Current Biology, 2001, 11, 803-807.	3.9	54
51	Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Molecular Microbiology, 1999, 33, 84-96.	2.5	181
52	Dynamic Movement of the ParA-like Soj Protein of B. subtilis and Its Dual Role in Nucleoid Organization and Developmental Regulation. Molecular Cell, 1999, 4, 673-682.	9.7	186
53	GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene, 1999, 227, 101-109.	2.2	234
54	Polar localization of the MinD protein of <i>Bacillus subtilis</i> and its role in selection of the mid-cell division site. Genes and Development, 1998, 12, 3419-3430.	5.9	332

#	Article	IF	CITATIONS
55	Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast. Wellcome Open Research, 0, 2, 2.	1.8	9