Kun Gou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4117921/publications.pdf

Version: 2024-02-01

		1478505	1125743
16	165	6	13
papers	citations	h-index	g-index
16	16	16	127
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On compressible versions of the incompressible neo-Hookean material. Mathematics and Mechanics of Solids, 2015, 20, 157-182.	2.4	54
2	Hyperelastic modeling of the combined effects of tissue swelling and deformation-related collagen renewal in fibrous soft tissue. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1543-1567.	2.8	19
3	Hyperelastic modeling of swelling in fibrous soft tissue with application to tracheal angioedema. Journal of Mathematical Biology, 2016, 72, 499-526.	1.9	16
4	Stress-Swelling Finite Element Modeling of Cervical Response With Homeostatic Collagen Fiber Distributions. Journal of Biomechanical Engineering, 2020, 142, .	1.3	15
5	Finite element simulation of intimal thickening in 2D multi-layered arterial cross sections by morphoelasticity. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112860.	6.6	13
6	Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique. International Journal of Engineering Science, 2012, 56, 1-16.	5.0	8
7	Nonlinear tubular organ modeling and analysis for tracheal angioedema by swelling-morphoelasticity. Journal of Engineering Mathematics, 2018, 112, 95-117.	1.2	7
8	Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions. Applied Mathematics and Computation, 2011, 217, 8765-8777.	2.2	6
9	Reconstruction of nonuniform residual stress for soft hyperelastic tissue via inverse spectral techniques. International Journal of Engineering Science, 2014, 82, 46-73.	5.0	6
10	An analytic study on nonlinear radius change for hyperelastic tubular organs under volume expansion. Acta Mechanica, 2020, 231, 1503-1517.	2.1	6
11	Computational modeling of tracheal angioedema due to swelling of the submucous tissue layer. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2861.	2.1	5
12	Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. Small, 2021, , 2103466.	10.0	5
13	Growth-profile configuration for specific deformations of tubular organs: A study of growth-induced thinning and dilation of the human cervix. PLoS ONE, 2021, 16, e0255895.	2.5	2
14	Utilization of the Theory of Small on Large Deformation for Studying Mechanosensitive Cellular Behaviors. Journal of Elasticity, 2019, 136, 137-157.	1.9	1
15	Utilization of the Theory of Small on Large Deformation for Studying Mechanosensitive Cellular Behaviors. Journal of Elasticity, 2019, 136, 137-157.	1.9	1
16	A Study on Estimating the Parameter of the Truncated Geometric Distribution. American Statistician, 0, , 1-12.	1.6	1