Richard Forbes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4117866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1999-2049.	1.0	10,272
2	Dreary state of precipitation in global models. Journal of Geophysical Research, 2010, 115, .	3.3	533
3	Characteristics of High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United Kingdom. Monthly Weather Review, 2008, 136, 3408-3424.	0.5	330
4	Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2315-2339.	1.0	170
5	Daytime convective development over land: A model intercomparison based on LBA observations. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 317-344.	1.0	160
6	The Convective Storm Initiation Project. Bulletin of the American Meteorological Society, 2007, 88, 1939-1956.	1.7	110
7	On the Representation of High-Latitude Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model. Monthly Weather Review, 2014, 142, 3425-3445.	0.5	98
8	Towards processâ€level representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 408-422.	1.0	89
9	Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance. Proceedings of the United States of America, 2017, 114, 10858-10863.	3.3	72
10	CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3612-3644.	1.2	62
11	CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2888-2909.	1.2	60
12	Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores. Monthly Weather Review, 2014, 142, 668-685.	0.5	58
13	Global versus Local MJO Forecast Skill of the ECMWF Model during DYNAMO. Monthly Weather Review, 2014, 142, 2228-2247.	0.5	56
14	Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 2064-2078.	1.0	55
15	Introduction to CAUSES: Description of Weather and Climate Models and Their Nearâ€6urface Temperature Errors in 5Âday Hindcasts Near the Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2655-2683.	1.2	53
16	Impact of different IFS microphysics on a warm conveyor belt and the downstream flow evolution. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2727-2739.	1.0	46
17	Summer Arctic clouds in the <scp>ECMWF</scp> forecast model: an evaluation of cloud parametrization schemes. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 387-400.	1.0	46
18	The ECMWF reâ€analysis for the AMMA observational campaign. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1457-1472.	1.0	42

RICHARD FORBES

#	Article	IF	CITATIONS
19	Comparison of <scp>ECMWF</scp> analysis and forecast humidity data with <scp>CARIBIC</scp> upper troposphere and lower stratosphere observations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 833-844.	1.0	40
20	Sensitivity of extratropical cyclone mesoscale structure to the parametrization of ice microphysical processes. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 1123-1148.	1.0	37
21	The future of Earth system prediction: Advances in model-data fusion. Science Advances, 2022, 8, eabn3488.	4.7	35
22	The sensitivity of atmospheric blocking to upstream latent heating – numerical experiments. Weather and Climate Dynamics, 2020, 1, 405-426.	1.2	31
23	The Impact of Low Clouds on Surface Shortwave Radiation in the ECMWF Model. Monthly Weather Review, 2012, 140, 3783-3794.	0.5	28
24	Interpreting an evaluation of the ECMWF global model with CloudSat observations: ambiguities due to radar reflectivity forward operator uncertainties. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 2047-2065.	1.0	28
25	The Numerics of Physical Parametrization in the ECMWF Model. Frontiers in Earth Science, 2018, 6, .	0.8	28
26	Comparison of Fast In situ Stratospheric Hygrometer (FISH) measurements of water vapor in the upper troposphere and lower stratosphere (UTLS) with ECMWF (re)analysis data. Atmospheric Chemistry and Physics, 2014, 14, 10803-10822.	1.9	27
27	Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model. Climate Dynamics, 2017, 48, 2255-2278.	1.7	27
28	Why are mixedâ€phase altocumulus clouds poorly predicted by largeâ€scale models? Part 1. Physical processes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9903-9926.	1.2	26
29	Modification of Potential Vorticity near the Tropopause by Nonconservative Processes in the ECMWF Model. Journals of the Atmospheric Sciences, 2019, 76, 1709-1726.	0.6	25
30	Dynamical effects of ice sublimation in a frontal wave. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2405-2434.	1.0	24
31	Revision of the Stochastically Perturbed Parametrisations model uncertainty scheme in the Integrated Forecasting System. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1364-1381.	1.0	20
32	Characterizing the radiative impacts of precipitating snow in the ECMWF Integrated Forecast System global model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9626-9637.	1.2	19
33	Quantifying the role of individual diabatic processes for the formation of PV anomalies in a North Pacific cyclone. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2454-2476.	1.0	17
34	Why are mixedâ€phase altocumulus clouds poorly predicted by largeâ€scale models? Part 2. Vertical resolution sensitivity and parameterization. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9927-9944.	1.2	15
35	Demistify: a large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog. Atmospheric Chemistry and Physics, 2022, 22, 319-333.	1.9	14
36	ARM's Impact on Numerical Weather Prediction at ECMWF. Meteorological Monographs, 2016, 57, 28.1-28.13.	5.0	13

RICHARD FORBES

#	Article	IF	CITATIONS
37	Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modelling. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 865-883.	1.0	11
38	Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement Sites. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1605-1617.	1.0	10
39	Fog prediction using a very high resolution numerical weather prediction model forced with a single profile. Meteorological Applications, 2009, 16, 129-141.	0.9	8
40	Parametrizing cloud geometry and its application in a subgrid cloudâ€edge erosion scheme. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1651-1667.	1.0	8
41	Understanding Global Model Systematic Shortwave Radiation Errors in Subtropical Marine Boundary Layer Cloud Regimes. Journal of Advances in Modeling Earth Systems, 2018, 10, 2042-2060.	1.3	7
42	Characterising extratropical nearâ€ŧropopause analysis humidity biases and their radiative effects on temperature forecasts. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3878-3898.	1.0	7
43	Building the Next Generation of Climate Modelers: Scale-Aware Physics Parameterization and the "Grey Zone―Challenge. Bulletin of the American Meteorological Society, 2018, 99, ES185-ES189.	1.7	5
44	Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data. Atmospheric Chemistry and Physics, 2014, 14, 8701-8721.	1.9	3
45	Regime dependence of ice cloud heterogeneity – a convective lifeâ€cycle effect?. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 3259-3268.	1.0	3
46	Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models. Atmospheric Chemistry and Physics, 2013, 13, 12043-12058.	1.9	2
47	Comment on "Surface Air Relative Humidities Spuriously Exceeding 100% in CMIP5 Model Output and Their Impact on Future Projections―by K. Ruosteenoja et al. (2017). Journal of Geophysical Research D:	1.2	2